Elements of Programming Languages
Tutorial 4: Subtyping and polymorphism
Week 6 (October 23–27, 2017)

Exercises marked ⋆ are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Subtyping and type bounds

Consider the following Scala code:

```scala
abstract class Super
case class Sub1(n: Int) extends Super
case class Sub2(b: Boolean) extends Super
```

This defines an abstract superclass `Super`, and subclasses with integer and boolean parameters.

(a) What subtyping relationships hold as a result of the above declarations?

(b) For each of the following subtyping judgments, write a derivation showing the judgment holds or argue that it doesn’t hold.

i. `Sub1 × Sub2 <: Super × Super`
ii. `Sub1 → Sub2 <: Super → Super`
iii. `Super → Super <: Sub1 → Sub2`
iv. `Super → Sub1 <: Sub2 → Super`
v. (`⋆`) `(Sub1 → Sub1) → Sub2 <: (Super → Sub1) → Super`

(c) Suppose we have a function

```scala
def f1(x: Super): Super = x match {
  case Sub1(n) => x
  case Sub2(b) => x
}
```

that simply inspects the type of the argument but preserves the value. Try running `f1` on `Sub2(true)`. What type does it have? What happens if you try to access the `b` field of the result?

(d) Now consider a different version of this function:

```scala
def f2[A](x: A): A = x match {
  case Sub1(n) => x
  case Sub2(b) => x
}
```

where we have abstracted over the argument type. Does this typecheck? Why or why not? If it typechecks, what happens if we apply it to values of type `Sub1, Sub2, Int`?
Finally, consider this version:

```scala
def f3[A <: Super](x: A): A = match {
  case Sub1(n) => x
  case Sub2(b) => x
}
```

Here, we have used Scala’s support for a feature called **type bounds** to constrain A to be a subtype of Super, with return type A. Does this typecheck? Why or why not? If it typechecks, does it solve the problems we encountered with f1 and f2?

2. **Typing derivations** Construct typing derivations for the following expressions, or argue why they are not well-formed:

 (a) \(\Lambda A. \lambda x : A.x + 1 \)

 (b) \((\star) \Lambda A. \lambda x : A \times A. \text{if } \text{fst } x == \text{snd } x \text{ then } \text{fst } x \text{ else } \text{snd } x \) (and how does its well-formedness depend on the typing rule for equality?)

3. **Evaluation derivations**

 Construct evaluation derivations for the following expressions, or explain why they do not evaluate:

 (a) \((\Lambda A. \lambda x : A.x + 1)\text{[int]} 42 \)

 (b) \((\Lambda A. \lambda x : A.x + 1)\text{[bool]} \text{true} \)

4. **(\star) Lists and polymorphism**

 Recall the proposed rules for lists from the previous tutorial.

 \[
 e ::= \cdots | \text{nil} | e_1 :: e_2 | \text{case } \text{list } e \text{ of } \{ \text{nil } \Rightarrow e_1 ; x :: y \Rightarrow e_2 \}
 \]

 \[
 v ::= \cdots | \text{nil} | v_1 :: v_2
 \]

 \[
 \tau ::= \cdots | \text{list} \tau
 \]

 Define \(L_\text{List} \) to be \(L_{\text{Poly}} \) extended with the above constructs.

 (a) Write a polymorphic function \(\text{map} \) that has this type:

 \[\forall A. \forall B. (A \to B) \to (\text{list}[A] \to \text{list}[B]) \]

 so that \(\text{map}(f)(l) \) is the function that traverses a list of A’s and, for each element \(x \) in \(l \), applies the function \(f \) to it.

 (b) Write out a typing derivation tree for the expression

 \(\text{map}[\text{int}][\text{int}](\lambda x.x + 1)(2 :: \text{nil}) \)

 assuming that \(\text{map} \) has the type given above.

 (c) Are lists and their associated operations definable in \(L_{\text{Poly}} \) already? Why or why not?