Exercises marked ⋆ are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. **Pairs, variants, and polymorphism in Scala**

 Scala includes built-in pair types (T_1, T_2), with pairing written (e_1, e_2) and projection written $e._1, e._2$. Likewise, Scala’s library includes binary sums $\text{Either}[T_1, T_2]$ with constructors $\text{Left}(_)$ and $\text{Right}(_)$. Pattern matching can be used to analyze $\text{Either}[T_1, T_2]$. Using these operations, write Scala functions having the following types, polymorphic in A, B, C:

 (a) $(A, B) \Rightarrow (B, A)$
 (b) $\text{Either}[A, B] \Rightarrow \text{Either}[B, A]$
 (c) $((A, B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))$
 (d) $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A, B) \Rightarrow C)$
 (e) $(\text{Either}[A, B] \Rightarrow C) \Rightarrow (A \Rightarrow C, B \Rightarrow C)$
 (f) $(A \Rightarrow C, B \Rightarrow C) \Rightarrow (\text{Either}[A, B] \Rightarrow C)$

2. **Typing derivations**

 Construct typing derivations for the following expressions, or argue why they are not well-formed:

 (a) $\lambda x:\text{int} + \text{bool}. \text{case} x \text{ of} \{ \text{left}(y) \Rightarrow y == 0 ; \text{right}(z) \Rightarrow z \}$
 (b) $(* \lambda x:\text{int} \times \text{int}. \text{if fst} \ x == \text{snd} \ x \text{ then left}(\text{fst} \ x) \text{ else right}(\text{snd} \ x)$

3. **Lists**

 We could add built-in lists to $\mathcal{L}_{\text{Data}}$ as follows:

 $e ::= \cdots | \text{nil} | e_1 :: e_2 | \text{case}_{\text{list}} e \text{ of} \{ \text{nil} \Rightarrow e_1 ; x :: y \Rightarrow e_2 \}$
 $v ::= \cdots | \text{nil} | v_1 :: v_2$
 $\tau ::= \cdots | \text{list}[\tau]$

 Define $\mathcal{L}_{\text{List}}$ to be $\mathcal{L}_{\text{Data}}$ extended with the above constructs.

 The typing rule for $\text{case}_{\text{list}}$ is:

 $\Gamma \vdash e : \text{list}[\tau] \quad \Gamma \vdash e_1 : \tau' \quad \Gamma, x : \tau, y : \text{list}[\tau] \vdash e_2 : \tau' \quad \Gamma \vdash \text{case}_{\text{list}} e \text{ of} \{ \text{nil} \Rightarrow e_1 ; x :: y \Rightarrow e_2 \} : \tau'$

 The basic idea here is: Given a list e, a $\text{case}_{\text{list}}$ expression does a case analysis. If e evaluates to nil, then we evaluate e_1. Otherwise, e must evaluate to a non-empty list of the form $v :: v'$, and we bind x to the head element v and y to the tail v', and evaluate e_2.
(a) Write appropriate typing rules for `nil` and `::`.
(b) (*) Write appropriate evaluation rules for the above constructs.

4. (*) Multiple argument functions and mutual recursion
 (a) So far, our function definitions take only one argument. Consider \(L_{Data} \) with named functions extended with multi-argument function definitions and applications:

 \[
 e ::= \cdots | \text{let } \text{fun } f(x_1 : \tau_1, x_2 : \tau_2) = e_1 \text{ in } e_2 | f(e_1, e_2)
 \]

 i. Write appropriate typing rules for these constructs.
 ii. Show that these constructs can be defined in \(L_{Data} \).
 iii. What about functions of three or more arguments?

 (b) In Lecture 5, we considered a simple form of recursion that just defines one recursive function with one argument. Part 4 of this tutorial showed how to accommodate multiple arguments. But what about mutual recursion?

 A simple example is

 \[
 \text{let rec } \text{even}(x:\text{int}) : \text{bool} = \text{if } x == 0 \text{ then true else odd}(x-1) \\
 \text{and } \text{odd}(x:\text{int}) : \text{bool} = \text{if } x == 0 \text{ then false else even}(x-1) \\
 \text{in } e
 \]

 Show that we can use pairing and \text{rec} to define these mutually recursive functions, by filling in the following template with an expression having type \(\text{unit} \rightarrow ((\text{int} \rightarrow \text{bool}) \times (\text{int} \rightarrow \text{bool})) \) with the desired behavior:

 \[
 \text{let } p = \cdots \text{ in } \text{let even } = \text{fst } p() \text{ in } \text{let odd } = \text{snd } p() \text{ in } e
 \]