
Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Elements of Programming Languages
Lecture 7: Records, variants, and subtyping

James Cheney

University of Edinburgh

October 12, 2017

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Overview

Last time:

Simple data structures: pairing (product types), choice
(sum types)

Today:

Records (generalizing products), variants (generalizing
sums) and pattern matching
Subtyping

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Records

Records generalize pairs to n-tuples with named fields.

e ::= · · · | hl1 = e1, . . . , ln = eni | e.l

v ::= · · · | hl1 = v1, . . . , ln = vni
⌧ ::= · · · | hl1 : ⌧1, . . . , ln : ⌧ni

Examples:

hfst=1, snd="forty-two"i.snd 7! "forty-two"

hx=3.0, y=4.0, length=5.0i

Record fields can be (first-class) functions too:

hx=3.0, y=4.0, length=�(x , y). sqrt(x ⇤ x + y ⇤ y)i

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Named variants

As mentioned earlier, named variants generalize binary
variants just as records generalize pairs

e ::= · · · | Ci(e) | case e of {C1(x)) e1; . . .}
v ::= · · · | Ci(v)

⌧ ::= · · · | [C1 : ⌧1, . . . , Cn : ⌧n]

Basic idea: allow a choice of n cases, each with a name

To construct a named variant, use the constructor name
on a value of the appropriate type, e.g. Ci(ei) where
ei : ⌧i

The case construct generalizes to named variants also

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Named variants in Scala: case classes

We have already seen (and used) Scala’s case class
mechanism

abstract class IntList

case class Nil() extends IntList

case class Cons(head: Int, tail: IntList)

extends IntList

Note: IntList, Nil, Cons are newly defined types,
di↵erent from any others.
Case classes support pattern matching

def foo(x: IntList) = x match {

case Nil() => ...

case Cons(head,tail) => ...

}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Aside: Records and Variants in Haskell

In Haskell, data defines a recursive, named variant type

data IntList = Nil | Cons Int IntList

and cases can define named fields:

data Point = Point {x :: Double, y :: Double}

In both cases the newly defined type is di↵erent from any
other type seen so far, and the named constructor(s) can
be used in pattern matching

This approach dates to the ML programming language
(Milner et al.) and earlier designs such as HOPE (Burstall
et al.).

(Both developed in Edinburgh)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Pattern matching

Datatypes and case classes support pattern matching

We have seen a simple form of pattern matching for sum
types.
This generalizes to named variants
But still is very limited: we only consider one “level” at
a time

Patterns typically also include constants and pairs/records

x match { case (1, (true, "abcd")) => ...}

Patterns in Scala, Haskell, ML can also be nested: that
is, they can match more than one constructor

x match { case Cons(1,Cons(y,Nil())) => ...}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

More pattern matching

Variables cannot be repeated, instead, explicit equality
tests need to be used.

The special pattern _ matches anything

Patterns can overlap, and usually they are tried in order

result match {

case OK => println("All is well")

case _ => println("Release the hounds!")

}

// not the same as

result match {

case _ => println("Release the hounds!")

case OK => println("All is well")

}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Expanding nested pattern matching

Nested pattern matching can be expanded out:

l match {

case Cons(x,Cons(y,Nil())) => ...

}

expands to

l match {

case Cons(x,t1) => t1 match {

case Cons(y,t2) => t2 match {

case Nil() => ...

} } }

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type abbreviations

Obviously, it quickly becomes painful to write
”hx : int, y : stri” over and over.

Type abbreviations introduce a name for a type.

type T = ⌧

An abbreviation name T treated the same as its
expansion ⌧

(much like let-bound variables)

Examples:

type Point = hx :dbl, y :dbli
type Point3d = hx :dbl, y :dbl, z :dbli
type Color = hr :int, g :int, b:inti
type ColoredPoint = hx :dbl, y :dbl, c :Colori

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type definitions

Instead, can also consider defining new (named) types

deftype T = ⌧

The term generative is sometimes used to refer to
definitions that create a new entity rather than
introducing an abbreviation

Type abbreviations are usually not allowed to be
recursive; type definitions can be.

deftype IntList = [Nil : unit, Cons : int⇥ IntList]

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type definitions vs. abbreviations in practice

In Haskell, type abbreviations are introduced by type,
while new types can be defined by data or newtype
declarations.

In Java, there is no explicit notation for type
abbreviations; the only way to define a new type is to
define a class or interface

In Scala, type abbreviations are introduced by type, while
the class, object and trait constructs define new
types

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping

Suppose we have a function:

dist = �p:Point. sqrt((p.x)2 + (p.y)2)

for computing the distance to the origin.

Only the x and y fields are needed for this, so we’d like to
be able to use this on ColoredPoints also.

But, this doesn’t typecheck:

dist(hx=8.0, y=12.0, c=purplei) = 13.0

We can introduce a subtyping relationship between Point
and ColoredPoint to allow for this.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping

Liskov proposed a guideline for subtyping:

Liskov Substitution Principle

If S is a subtype of T , then objects of type T may be replaced
with objects of type S without altering any of the desirable
properties of the program.

If we use ⌧ <: ⌧ 0 to mean “⌧ is a subtype of ⌧ 0”, and
consider well-typedness to be desirable, then we can
translate this to the following subsumption rule:

� ` e : ⌧1 ⌧1 <: ⌧2

� ` e : ⌧2

This says: if e has type ⌧1 and ⌧1 <: ⌧2, then we can
proceed by pretending it has type ⌧2.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Record subtyping: width and depth

There are several di↵erent ways to define subtyping for
records.

Width subtyping: subtype has same fields as supertype
(with identical types), and may have additional fields at
the end:

hl1 : ⌧1, . . . , ln : ⌧n, . . . , ln+k : ⌧n+ki <: hl1 : ⌧1, . . . , ln : ⌧ni

Depth subtyping: subtype’s fields are pointwise
subtypes of supertype

⌧1 <: ⌧ 01 · · · ⌧n <: ⌧ 0n
hl1 : ⌧1, . . . , ln : ⌧ni <: hl1 : ⌧ 01, . . . , ln : ⌧ 0ni

These rules can be combined. Optionally, field reordering
can also be allowed (but is harder to implement).

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Examples

(We’ll abbreviate P = Point, P3 = Point3d ,
CP = ColoredPoint to save space...)

So we have:

P3d = hx :dbl, y :dbl, z :dbli <: hx :dbl, y :dbli = P

CP = hx :dbl, y :dbl, c :Colori <: hx :dbl, y :dbli = P

but no other subtyping relationships hold

So, we can call dist on Point3d or ColoredPoint:

x : P3d ` x : P3d P3d <: P
x : P3d ` x : P

...
x : P3d ` dist : P ! dbl

x : P3d ` dist(x) : dbl

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping for pairs and variants

For pairs, subtyping is componentwise

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ⇥ ⌧2 <: ⌧ 01 ⇥ ⌧ 02

Similarly for binary variants

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 + ⌧2 <: ⌧ 01 + ⌧ 02

For named variants, can have additional subtyping rules
(but this is rare)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping for functions

When is A1 ! B1 <: A2 ! B2?

Maybe componentwise, like pairs?

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧ 01 ! ⌧ 02

But then we can do this (where �(p) = P):

� ` �x .x : CP ! CP
CP <: P CP <: CP
CP ! CP <: P ! CP

� ` �x .x : P ! CP � ` p : P

� ` (�x .x)p : CP

So, once ColoredPoint is a subtype of Point, we can
change any Point to a ColoredPoint also. That doesn’t
seem right.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Covariant vs. contravariant

For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧1 ! ⌧ 02

Subtyping of function results, pairs, etc., where order is
preserved, is covariant.

For the argument type of a function, the direction of
subtyping is flipped:

⌧ 01 <: ⌧1

⌧1 ! ⌧2 <: ⌧ 01 ! ⌧2

Subtyping of function arguments, where order is reversed,
is called contravariant.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

The “top” and “bottom” types

any: a type that is a supertype of all types.

Such a type describes the common interface of all its
subtypes (e.g. hashing, equality in Java)
In Scala, this is called Any

empty: a type that is a subtype of all types.

Usually, such a type is considered to be empty: there
cannot actually be any values of this type.
We’ve actually encountered this before, as the
degenerate case of a choice type where there are zero
chioces
In Scala, this type is called Nothing. So for any Scala
type ⌧ we have Nothing <: ⌧ <: Any .

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Summary: Subtyping rules

⌧1 <: ⌧2

empty <: ⌧ ⌧ <: any ⌧ <: ⌧
⌧1 <: ⌧2 ⌧2 <: ⌧3

⌧1 <: ⌧3

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 ⇥ ⌧2 <: ⌧ 01 ⇥ ⌧ 02

⌧1 <: ⌧ 01 ⌧2 <: ⌧ 02
⌧1 + ⌧2 <: ⌧ 01 + ⌧ 02

⌧ 01 <: ⌧1 ⌧2 <: ⌧ 02
⌧1 ! ⌧2 <: ⌧ 01 ! ⌧ 02

Notice that we combine the covariant and contravariant rules
for functions into a single rule.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Structural vs. Nominal subtyping

The approach to subtyping considered so far is called
structural.

The names we use for type abbreviations don’t matter,
only their structure. For example, Point3d <: Point
because Point3d has all of the fields of Point (and more).

Then dist(p) also runs on p : Point3d (and gives a
nonsense answer!)

So far, a defined type has no subtypes (other than itself).

By default, definitions ColoredPoint, Point and Point3d
are unrelated.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Structural vs. Nominal subtyping

If we defined new types Point 0 and Point3d 0, rather than
treating them as abbreviations, then we have more
control over subtyping

Then we can declare ColoredPoint 0 to be a subtype of
Point 0

deftype Point 0 = hx :dbl, y :dbli
deftype ColoredPoint 0 <: Point 0 = hx :dbl, y :dbl, c :Colori

However, we could choose not to assert Point3d 0 to be a
subtype of Point 0, preventing (mis)use of subtyping to
view Point3d 0s as Point 0s.
This nominal subtyping is used in Java and Scala

A defined type can only be a subtype of another if it is
declared as such
More on this later!

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Summary

Today we covered:

Records, variants, and pattern matching
Type abbreviations and definitions
Subtyping

Next time:

Polymorphism and type inference

