Records, Variants, and Pattern Matching Type abbreviations and definitions

Elements of Programming Languages

Lecture 7: Records, variants, and subtyping

James Cheney
University of Edinburgh

October 12, 2017

Records, Variants, and Pattern Matching Type abbreviations and definitions

Records

@ Records generalize pairs to n-tuples with named fields.

e = | (h=e,....I,=e, el
v i= | (h=wv,.... L=
T o= (T, T

@ Examples:

(fst=1,snd="forty-two").snd — "forty-two"
(x=3.0, y=4.0, length=5.0)

@ Record fields can be (first-class) functions too:

(x=3.0, y=4.0, length=\(x, y). sqrt(x x x + y x y))

Subtyping Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
Overview
@ Last time:
e Simple data structures: pairing (product types), choice
(sum types)
e Today:
e Records (generalizing products), variants (generalizing
sums) and pattern matching
e Subtyping
Subtyping Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Named variants

@ As mentioned earlier, named variants generalize binary
variants just as records generalize pairs

e = ---|Cle)|case eof {Gi(x)=e;...}
v = | G(v)
T o= | [G iy, Gt Tl

@ Basic idea: allow a choice of n cases, each with a name

@ To construct a named variant, use the constructor name
on a value of the appropriate type, e.g. Ci(e;) where
€ . T

@ The case construct generalizes to named variants also

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Named variants in Scala: case classes

@ We have already seen (and used) Scala’s case class
mechanism

abstract class IntList

case class Nil() extends IntList

case class Cons(head: Int, tail: IntList)
extends IntList

@ Note: IntList, Nil, Cons are newly defined types,
different from any others.
o Case classes support pattern matching

def foo(x: IntList) = x match {
case Nil() => ...
case Cons(head,tail) => ...

}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Pattern matching

@ Datatypes and case classes support pattern matching

e We have seen a simple form of pattern matching for sum
types.

e This generalizes to named variants

e But still is very limited: we only consider one “level” at
a time

@ Patterns typically also include constants and pairs/records

x match { case (1, (true, "abcd")) => ...}

@ Patterns in Scala, Haskell, ML can also be nested: that
is, they can match more than one constructor

x match { case Cons(1,Cons(y,Nil())) => ...}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Aside: Records and Variants in Haskell

@ In Haskell, data defines a recursive, named variant type
data IntList = Nil | Cons Int IntList

@ and cases can define named fields:

Double}

@ In both cases the newly defined type is different from any
other type seen so far, and the named constructor(s) can
be used in pattern matching

data Point = Point {x Double, y

@ This approach dates to the ML programming language
(Milner et al.) and earlier designs such as HOPE (Burstall
et al.).

o (Both developed in Edinburgh)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

More pattern matching

@ Variables cannot be repeated, instead, explicit equality
tests need to be used.

@ The special pattern _ matches anything
@ Patterns can overlap, and usually they are tried in order

result match {
case OK => println("All is well")
case _ => println("Release the hounds!")
}
// mot the same as
result match {
case _ => println("Release the hounds!")

case OK => println("All is well")

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Expanding nested pattern matching

@ Nested pattern matching can be expanded out:

1 match {
case Cons(x,Cons(y,Nil())) => ...

}

expands to

1 match {
case Cons(x,tl) => t1 match {
case Cons(y,t2) => t2 match {
case Nil() => ...

P r}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type definitions

@ Instead, can also consider defining new (named) types
deftype T =7

@ The term generative is sometimes used to refer to
definitions that create a new entity rather than
introducing an abbreviation

@ Type abbreviations are usually not allowed to be
recursive; type definitions can be.

deftype IntList = [Nil : unit, Cons : int x IntList]

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type abbreviations

@ Obviously, it quickly becomes painful to write
"(x :int,y : str)" over and over.

e Type abbreviations introduce a name for a type.

type T =71

An abbreviation name T treated the same as its
expansion T
o (much like 1let-bound variables)

@ Examples:

type Point = (x:dbl, y:dbl)

type Point3d = (x:dbl, y:dbl, z:dbl)

type Color = (r:int, g:int, b:int)

type ColoredPoint = (x:dbl, y:dbl, c:Color)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Type definitions vs. abbreviations in practice

@ In Haskell, type abbreviations are introduced by type,
while new types can be defined by data or newtype
declarations.

@ In Java, there is no explicit notation for type
abbreviations; the only way to define a new type is to
define a class or interface

@ In Scala, type abbreviations are introduced by type, while
the class, object and trait constructs define new

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping

@ Suppose we have a function:
dist = \p:Point. sqrt((p.x)*> + (p.y)?)

for computing the distance to the origin.

@ Only the x and y fields are needed for this, so we'd like to
be able to use this on ColoredPoints also.

@ But, this doesn't typecheck:
dist((x=8.0,y=12.0, c=purple)) = 13.0

@ We can introduce a subtyping relationship between Point
and ColoredPoint to allow for this.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Record subtyping: width and depth

@ There are several different ways to define subtyping for
records.

e Width subtyping: subtype has same fields as supertype
(with identical types), and may have additional fields at
the end:

(hoomy el Toy ook Toak) <o (i, ooy by o Th)

@ Depth subtyping: subtype's fields are pointwise
subtypes of supertype
T <iT Tp <: T,
(homy, ..o i) < (h:omy,. .. lh:T))
@ These rules can be combined. Optionally, field reordering
can also be allowed (but is harder to implement).

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Subtyping

@ Liskov proposed a guideline for subtyping:

Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be replaced
with objects of type S without altering any of the desirable
properties of the program.

o If we use 7 <: 7/ to mean "7 is a subtype of 7", and
consider well-typedness to be desirable, then we can
translate this to the following subsumption rule:

Fl—e:Tl 71 <! To
[Fe:m

@ This says: if e has type 7, and 71 <: 7, then we can
proceed by pretending it has type 7.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Examples

e (We'll abbreviate P = Point, P3 = Point3d,
CP = ColoredPoint to save space...)

@ So we have:
P3d = (x:dbl, y:dbl, z:dbl) <: (x:dbl, y:dbl) = P

CP = (x:dbl, y:dbl, c:Color) <: (x:dbl, y:dbl) = P

but no other subtyping relationships hold
@ So, we can call dist on Point3d or ColoredPoint:

x:P3d+x:P3d P3d<: P :
x:P3dFx: P x: P3d F dist : P — dbl
x : P3d + dist(x) : dbl

Records, Variants, and Pattern Matching Type abbreviations and definitions

Subtyping for pairs and variants

@ For pairs, subtyping is componentwise

T <!T] To <!Th

T1 X Tp <:T] X Th
@ Similarly for binary variants

T <iT] Tp <!Th

T+ T <7+ T

@ For named variants, can have additional subtyping rules

(but this is rare)

Records, Variants, and Pattern Matching Type abbreviations and definitions

Covariant vs. contravariant

Subtyping

Subtyping

@ For the result type of a function (and for pairs and other

data structures), the direction of subtyping is preserved:

Ty <! Th

T — Tp <:TL — Th

@ Subtyping of function results, pairs, etc., where order is

preserved, is covariant.

@ For the argument type of a function, the direction of

subtyping is flipped:

T <iTy

=T <!T| =T

@ Subtyping of function arguments, where order is reversed,

is called contravariant.

Records, Variants, and Pattern Matching Type abbreviations and definitions

Subtyping for functions

@ When is A1 — Bl < A2 — BQ?
@ Maybe componentwise, like pairs?

T<iT] Tp<!Th

T — T <! T{ = T}
@ But then we can do this (where ['(p) = P):

CP<:P CP<:CP
FDXxx:CP—CP CP—CP<:P—CP
= Axx:P— CP M=p:

Subtyping

P

e (Ax.x)p: CP

@ So, once ColoredPoint is a subtype of Point, we can
change any Point to a ColoredPoint also. That doesn't
seem right.

Records, Variants, and Pattern Matching Type abbreviations and definitions

The “top” and “bottom” types

@ any: a type that is a supertype of all types.

e Such a type describes the common interface of all its
subtypes (e.g. hashing, equality in Java)

e In Scala, this is called Any

@ empty: a type that is a subtype of all types.

e Usually, such a type is considered to be empty: there
cannot actually be any values of this type.

o We've actually encountered this before, as the
degenerate case of a choice type where there are zero
chioces

e In Scala, this type is called Nothing. So for any Scala
type 7 we have Nothing <: T <: Any.

Subtyping

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Summary: Subtyping rules

71 <:To

T <!To To <!:T3
71 <! T3

empty <: T T <:any TT

T <iT T <!Th <7 T»<!Th

Ty X Tp <! Ty X Th T+ T < T+ Th

T <!Ty Tp <! T

T — Tp <:T| = Th

Notice that we combine the covariant and contravariant rules
for functions into a single rule.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Structural vs. Nominal subtyping

@ If we defined new types Point’ and Point3d’, rather than
treating them as abbreviations, then we have more
control over subtyping

@ Then we can declare ColoredPoint’ to be a subtype of
Point’

deftype Point’ = (x:dbl, y:dbl)
deftype ColoredPoint’ <: Point’ = (x:dbl, y:dbl, c:Color)

@ However, we could choose not to assert Point3d’ to be a
subtype of Point’, preventing (mis)use of subtyping to
view Point3d'’s as Point’s.

@ This nominal subtyping is used in Java and Scala

e A defined type can only be a subtype of another if it is
declared as such
e More on this later!

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Structural vs. Nominal subtyping

@ The approach to subtyping considered so far is called
structural.

@ The names we use for type abbreviations don't matter,
only their structure. For example, Point3d <: Point
because Point3d has all of the fields of Point (and more).

@ Then dist(p) also runs on p : Point3d (and gives a
nonsense answer!)

@ So far, a defined type has no subtypes (other than itself).

@ By default, definitions ColoredPoint, Point and Point3d
are unrelated.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

Summary

@ Today we covered:
e Records, variants, and pattern matching
e Type abbreviations and definitions
e Subtyping
@ Next time:
e Polymorphism and type inference

