The story so far

- We’ve now covered the main ingredients of any programming language:
 - Abstract syntax
 - Semantics/interpretation
 - Types
 - Variables and binding
 - Functions and recursion
- but the language is still very limited: there are no “data structures” (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes, interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.

Pairs

- The simplest way to combine data structures: pairing

 $$(1, 2) \quad (\text{true, false}) \quad (1, (\text{true, } \lambda x:\text{int}. x + 2))$$

- If we have a pair, we can extract one of the components:

 $\text{fst } (1, 2) \Rightarrow 1 \quad \text{snd } (\text{true, false}) \Rightarrow \text{false}$

- Finally, we can often pattern match against a pair, to extract both components at once:

 $\text{let } (x, y) = (1, 2) \in (y, x) \Rightarrow (2, 1)$

Pairs in various languages

<table>
<thead>
<tr>
<th></th>
<th>Haskell</th>
<th>Scala</th>
<th>Java</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2)</td>
<td>new Pair(1,2)</td>
<td>(1,2)</td>
<td></td>
</tr>
<tr>
<td>fst e</td>
<td>e._1</td>
<td>e.getFirst()</td>
<td>e[0]</td>
<td></td>
</tr>
<tr>
<td>snd e</td>
<td>e._2</td>
<td>e.getSecond()</td>
<td>e[1]</td>
<td></td>
</tr>
<tr>
<td>let (x,y) =</td>
<td>val (x,y) =</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have “record”, “struct” or “class” structures that accommodate multiple, named fields.
 - A pair type can be defined but is not built-in and there is no support for pattern-matching
Syntax and Semantics of Pairs

- Syntax of pair expressions and values:
 \[e ::= \cdots | (e_1, e_2) | \text{fst } e | \text{snd } e \]
 \[\nu ::= \cdots | (\nu_1, \nu_2) \]

\[(e_1, e_2) \downarrow (\nu_1, \nu_2) \]
\[\text{fst } e \downarrow \nu_1 \quad \text{snd } e \downarrow \nu_2 \]
\[e_1 \downarrow (\nu_1, \nu_2) \quad e_2[\nu_1/x, \nu_2/y] \downarrow \nu \]
\[\text{let pair } (x, y) = e_1 \text{ in } e_2 \downarrow \nu \]

let vs. fst and snd

- The \text{fst} and \text{snd} operations are definable in terms of \text{let pair}:
 \[\text{fst } e \iff \text{let pair } (x, y) = e \text{ in } x \]
 \[\text{snd } e \iff \text{let pair } (x, y) = e \text{ in } y \]

- Actually, the \text{let pair} construct is definable in terms of \text{let}, \text{fst}, \text{snd} too:
 \[\text{let pair } (x, y) = e_1 \text{ in } e_2 \iff \text{let } p = e_1 \text{ in } e_2[\text{fst } p/x, \text{snd } p/y] \]

- We typically just use the (simpler) \text{fst} and \text{snd} constructs and treat \text{let pair} as syntactic sugar.

Types for Pairs

- Types for pair expressions:
 \[\tau ::= \cdots | \tau_1 \times \tau_2 \]

\[\Gamma \vdash e : \tau \] for pairs

- \[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]
 \[\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \]

- \[\Gamma \vdash e : \tau_1 \times \tau_2 \quad \Gamma \vdash e : \tau_1 \times \tau_2 \]
 \[\Gamma \vdash \text{fst } e : \tau_1 \quad \Gamma \vdash \text{snd } e : \tau_2 \]

- \[\Gamma \vdash e_1 : \tau_1 \times \tau_2 \quad \Gamma, x : \tau_1, y : \tau_2 \vdash e_2 : \tau \]
 \[\Gamma \vdash \text{let pair } (x, y) = e_1 \text{ in } e_2 : \tau \]

More generally: tuples and records

- Nothing stops us from adding triples, quadruples, \ldots, \text{n}-tuples.
 \[(1, 2, 3) \quad (\text{true}, 2, 3, \lambda x.(x, x)) \]

- As mentioned earlier, many languages prefer named record syntax:
 \[(a : 1, b : 2, c : 3) \quad (b : \text{true}, n_1 : 2, n_2 : 3, f : \lambda x.(x, x)) \]

- (cf. class fields in Java, structs in C, etc.)

- These are undeniably useful, but are definable using pairs.

- We’ll revisit named record-style constructs when we consider classes and modules.
Special case: the “unit” type

- Nothing stops us from adding a type of 0-tuples: a data structure with no data. This is often called the unit type, or unit.

\[
e ::= \cdots | ()
\]

\[
v ::= \cdots | ()
\]

\[
\tau ::= \cdots | \text{unit}
\]

\[
() \downarrow () \quad \Gamma \vdash () : \text{unit}
\]

- this may seem a little pointless: why bother to define a type with no (interesting) data and no operations?
- This is analogous to void in C/Java; in Haskell and Scala it is called ()

Motivation for variant types

- Pairs allow us to combine two data structures (a \(\tau_1\) and a \(\tau_2\)).
- What if we want a data structure that allows us to choose between different options?
- We’ve already seen one example: booleans.
 - A boolean can be one of two values.
 - Given a boolean, we can look at its value and choose among two options, using if then else.
- Can we generalize this idea?

Another example: null values

- Sometimes we want to produce either a regular value or a special “null” value.
- Some languages, including SQL and Java, allow many types to have null values by default.
 - This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
 - Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 “simply because it was so easy to implement”!
 - he now calls them “the billion dollar mistake”:
Pairs and Records Variants and Case Analysis

What would be better?

Consider an option type:

\[
\begin{align*}
 e & ::= \cdots | \text{none} | \text{some}(e) \\
 \tau & ::= \cdots | \text{option}[\tau]
\end{align*}
\]

Then we can use none to indicate absence of a value, and some(e) to give the present value.

Moreover, the type of an expression tells us whether null values are possible.

Error codes

The option type is useful but still a little limited: we either get a \(\tau\) value, or nothing.

If none means failure, we might want to get some more information about why the failure occurred.

We would like to be able to return an error code

- In older languages, notably C, special values are often used for errors
- Example: read reads from a file, and either returns number of bytes read, or -1 representing an error
- The actual error code is passed via a global variable
- It’s easy to forget to check this result, and the function’s return value can’t be used to return data.
- Other languages use exceptions, which we’ll cover much later

The OK-or-error type

Suppose we want to return either a normal value \(\tau_{ok}\) or an error value \(\tau_{err}\).

Let’s write \(\text{okOrErr}[\tau_{ok}, \tau_{err}]\) for this type.

\[
\begin{align*}
 e & ::= \cdots | \text{ok}(e) | \text{err}(e) \\
 \tau & ::= \cdots | \text{okOrErr}[\tau_1, \tau_2]
\end{align*}
\]

Basic idea:
- if \(e\) has type \(\tau_{ok}\), then \(\text{ok}(e)\) has type \(\text{okOrErr}[\tau_{ok}, \tau_{err}]\)
- if \(e\) has type \(\tau_{err}\), then \(\text{err}(e)\) has type \(\text{okOrErr}[\tau_{ok}, \tau_{err}]\)

How do we use \(\text{okOrErr}[\tau_{ok}, \tau_{err}]\)?

- When we talked about \(\text{option}[\tau]\), we didn’t really say how to use the results.
- If we have a \(\text{okOrErr}[\tau_{ok}, \tau_{err}]\) value \(v\), then we want to be able to branch on its value:
 - If \(v\) is \(\text{ok}(v_{ok})\), then we probably want to get at \(v_{ok}\) and use it to proceed with the computation
 - If \(v\) is \(\text{err}(v_{err})\), then we probably want to get at \(v_{err}\) to report the error and stop the computation.
- In other words, we want to perform case analysis on the value, and extract the wrapped value for further processing.
Case analysis

- We consider a case analysis construct as follows:

 \[
 \text{case } e \text{ of } \{ \text{ok}(x) \Rightarrow e_{\text{ok}}, \text{err}(y) \Rightarrow e_{\text{err}} \}
 \]

- This is a generalized conditional: “If \(e\) evaluates to \(\text{ok}(\nu_{\text{ok}})\), then evaluate \(e_{\text{ok}}\) with \(\nu_{\text{ok}}\) replacing \(x\), else it evaluates to \(\text{err}(\nu_{\text{err}})\) so evaluate \(e_{\text{err}}\) with \(\nu_{\text{err}}\) replacing \(y\).”

- Here, \(x\) is bound in \(e_{\text{ok}}\) and \(y\) is bound in \(e_{\text{err}}\)

- This construct should be familiar by now from Scala:

  ```scala
  e match { case Ok(x) => e1
case Err(x) => e2
} // note slightly different syntax
  ```

- Creating a \(\tau_1 + \tau_2\) value is straightforward.
 - Case analysis branches on the \(\tau_1 + \tau_2\) value

Variant types, more generally

- Notice that the \(\text{ok}\) and \(\text{err}\) cases are completely symmetric
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let’s rename and generalize the notation:

 \[
 \begin{align*}
 e & ::= \cdots | \text{left}(e) | \text{right}(e) \\
 \nu & ::= \cdots | \text{left}(\nu) | \text{right}(\nu) \\
 \tau & ::= \cdots | \tau_1 + \tau_2
 \end{align*}
 \]

- We will call type \(\tau_1 + \tau_2\) a variant type (sometimes also called sum or disjoint union)

Types for variants

- We extend the typing rules as follows:

 \[
 \begin{array}{c}
 \Gamma \vdash e : \tau_1 \\
 \Gamma \vdash e : \tau_2 \\
 \Gamma \vdash \text{left}(e) : \tau_1 + \tau_2 \\
 \Gamma \vdash \text{right}(e) : \tau_1 + \tau_2 \\
 \Gamma \vdash e : \tau_1 + \tau_2 \\
 \Gamma, x : \tau_1 \vdash e_1 : \tau \\
 \Gamma, y : \tau_2 \vdash e_2 : \tau \\
 \Gamma \vdash \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 \} : \tau
 \end{array}
 \]

 - Idea: left and right “wrap” \(\tau_1\) or \(\tau_2\) as \(\tau_1 + \tau_2\)
 - Idea: Case is like conditional, only we can use the wrapped value extracted from \(\text{left}(\nu)\) or \(\text{right}(\nu)\).

Semantics of variants

- We extend the evaluation rules as follows:

 \[
 \begin{array}{c}
 e \Downarrow \nu \\
 \text{left}(e) \Downarrow \text{left}(\nu) \\
 \text{right}(e) \Downarrow \text{right}(\nu) \\
 \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 \} \Downarrow \nu \\
 e \Downarrow \text{left}(\nu_1), e_1[\nu_1/x] \Downarrow \nu \\
 e \Downarrow \text{right}(\nu_2), e_2[\nu_2/y] \Downarrow \nu \\
 \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 \} \Downarrow \nu
 \end{array}
 \]

 - Creating a \(\tau_1 + \tau_2\) value is straightforward.
 - Case analysis branches on the \(\tau_1 + \tau_2\) value
Defining Booleans and option types

- The Boolean type bool can be defined as `unit + unit`

 \[\text{true } \iff \lambda() \quad \text{false } \iff \lambda() \]

- Conditional is then defined as case analysis, ignoring the variables

 \[\text{if } e \text{ then } e_1 \text{ else } e_2 \iff \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 \} \]

- Likewise, the option type is definable as `\(\tau + \text{unit} \)`:

 \[\text{some}(e) \iff \text{left}(e) \quad \text{none } \iff \lambda() \]

Datatypes: named variants and case classes

- Programming directly with binary variants is awkward

- As for pairs, the `\(\tau_1 + \tau_2 \)` type can be generalized to \(n \)-ary choices or named variants

- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways

 - Haskell supports "datatypes" which give constructor names to the cases
 - In Java, can use classes and inheritance to simulate this, verbosely (Python similar)
 - Scala does not directly support named variant types, but provides "case classes" and pattern matching
 - We'll revisit case classes and variants later in discussion of object-oriented programming.

The empty type

- We can also consider the 0-ary variant type

 \[\tau ::= \ldots | \text{empty} \]

 with no associated expressions or values

- Scala provides Nothing as a built-in type; most languages do not

 - [Perhaps confusingly, this is not the same thing at all as the void or unit type!]

- We will talk about Nothing again when we cover subtyping

 - (Insert Seinfeld joke here, if anyone is old enough to remember that.)

Summary

- Today we've covered two primitive types for structured data:

 - Pairs, which combine two or more data structures
 - Variants, which represent alternative choices among data structures
 - Special cases (unit, empty) and generalizations (records, datatypes)

- This is a pattern we'll see over and over:

 - Define a type and expressions for creating and using its elements
 - Define typing rules and evaluation rules

- Next time:

 - Named records and variants
 - Subtyping