Variables

A variable is a symbol that can 'stand for' a value.

Often written x, y, z, \ldots

Let’s extend L_{if} with variables:

$$e ::= n \in \mathbb{N} \mid e_1 + e_2 \mid e_1 \times e_2$$

$$\mid b \in \mathbb{B} \mid e_1 == e_2 \mid \text{if } e \text{ then } e_1 \text{ else } e_2$$

$$\mid x \in \text{Var}$$

Here, x is shorthand for an arbitrary variable in Var, the set of expression variables.

Let’s call this language L_{Var}

Aside: Operators, operators everywhere

We have now considered several binary operators

$$+ \times \land \lor \approx$$

as well as a unary one (\neg)

It is tiresome to write their syntax, evaluation rules, and typing rules explicitly, every time we add to the language.

We will sometimes represent such operations using schematic syntax $e_1 \oplus e_2$ and rules:

$$\begin{array}{c}
\begin{array}{c}
\vdash e_1 : \tau' \\
\vdash e_2 : \tau'
\end{array}
\mid \\
\oplus : \tau' \times \tau' \rightarrow \tau
\end{array}$$

where $\oplus : \tau' \times \tau' \rightarrow \tau$ means that operator \oplus takes arguments τ', τ' and yields result of type τ

(e.g. $+ : \text{int} \times \text{int} \rightarrow \text{int}, == : \tau \times \tau \rightarrow \text{bool}$)

Substitution

We said “A variable can ‘stand for’ a value.”

What does this mean precisely?

Suppose we have $x + 1$ and we want x to “stand for” 42.

We should be able to replace x everywhere in $x + 1$ with 42:

$$x + 1 \rightsquigarrow 42 + 1$$

Similarly, if x “stands for” 3 then

$$\text{if } x == y \text{ then } x \text{ else } y \rightsquigarrow \text{if } 3 == y \text{ then } 3 \text{ else } y$$
Substitution

- Let’s introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x, v, the substitution of v for x in e is an expression written $e[v/x]$.

- For L_{Var}, define substitution as follows:

 - $v_0[v/x] = v_0$
 - $x[v/x] = v$
 - $y[v/x] = y$ ($x \neq y$)
 - $(e_1 + e_2)[v/x] = e_1[v/x] + e_2[v/x]$
 - $(\text{if } e \text{ then } e_1 \text{ else } e_2)[v/x] = \text{if } e[v/x] \text{ then } e_1[v/x] \text{ else } e_2[v/x]$

Scope

- As we all know from programming, we can reuse variable names:

  ```scala
  def foo(x: Int) = x + 1
  def bar(x: Int) = x * x
  ```

- The occurrences of x in foo have nothing to do with those in bar
- Moreover the following code is equivalent (since y is not already in use in foo or bar):

  ```scala
  def foo(x: Int) = x + 1
  def bar(y: Int) = y * y
  ```

Scope, Binding and Bound Variables

- Certain occurrences of variables are called binding
- Again, consider

  ```scala
  def foo(x: Int) = x + 1
  def bar(y: Int) = y * y
  ```

- The occurrences of x and y on the left-hand side of the definitions are binding
- Binding occurrences define scopes: the occurrences of x and y on the right-hand side are bound
- Any variables not in scope of a binder are called free
- Key idea: Renaming all binding and bound occurrences in a scope consistently (avoiding name clashes) should not affect meaning

Scope

- Definition (Scope)

 The scope of a variable name is the collection of program locations in which occurrences of the variable refer to the same thing.

 - I am being a little casual here: “refer to the same thing” doesn’t necessarily mean that the two variable occurrences evaluate to the same value at run time.
 - For example, the variables could refer to a shared reference cell whose value changes over time.
Variables and Substitution

Free variables

- The set of free variables of an expression is defined as:
 \[
 \text{FV}(n) = \emptyset \\
 \text{FV}(x) = \{x\} \\
 \text{FV}(e_1 \oplus e_2) = \text{FV}(e_1) \cup \text{FV}(e_2) \\
 \text{FV}(\text{if } e \text{ then } e_1 \text{ else } e_2) = \text{FV}(e) \cup \text{FV}(e_1) \cup \text{FV}(e_2) \\
 \text{FV}(\text{let } x = e_1 \text{ in } e_2) = \text{FV}(e_1) \cup (\text{FV}(e_2) - \{x\})
 \]

- (Recall that \(e_1 \oplus e_2\) is shorthand for several cases.)

- Examples:
 \[
 \text{FV}(x + y) = \{x, y\} \\
 \text{FV}(\text{let } x = y \text{ in } x) = \{y\} \\
 \text{FV}(\text{let } x = x + y \text{ in } z) = \{x, y, z\}
 \]

Scope and Binding

Simple scope: let-binding

- For now, we consider a very basic form of scope: let-binding.

 \[
 e ::= \cdots | x | \text{let } x = e_1 \text{ in } e_2
 \]

- We define \(L_{\text{let}}\) to be \(L_{\text{if}}\) extended with variables and let.

- In an expression of the form \(\text{let } x = e_1 \text{ in } e_2\), we say that \(x\) is bound in \(e_2\).

- Intuition: let-binding allows us to use a variable \(x\) as an abbreviation for some other expression:

 \[
 \text{let } x = 1 + 2 \text{ in } 3 \times x \rightsquigarrow 3 \times (1 + 2)
 \]

Equivalence up to consistent renaming

- We wish to consider expressions equivalent if they have the same binding structure.

- We can rename bound names to get equivalent expressions:

 \[
 \text{let } x = y + z \text{ in } x \equiv \text{let } u = y + z \text{ in } u \equiv w
 \]

- But some renamings change the binding structure:

 \[
 \text{let } x = y + z \text{ in } x \not\equiv \text{let } w = y + z \text{ in } w \equiv w
 \]

- Intuition: Renaming to \(u\) is fine, because \(u\) is not already “in use”.

- But renaming to \(w\) changes the binding structure, since \(w\) was already “in use”.

Evaluation and types

Renaming

- We will also use the following swapping operation to rename variables:

 \[
 x(y \leftrightarrow z) = \begin{cases}
 y & \text{if } x = z \\
 z & \text{if } x = y \\
 x & \text{otherwise}
 \end{cases}
 \]

- Examples:

 \[
 (\text{let } x = y \text{ in } x + z)(x \leftrightarrow z) = \text{let } z = y \text{ in } z + x
 \]
Alpha-conversion

- We can now define “consistent renaming”.
- Suppose \(y \not\in \text{FV}(e_2) \). Then we can rename a let-expression as follows:
 \[
 \text{let } x = e_1 \text{ in } e_2 \xrightarrow{\alpha} \text{let } y = e_1 \text{ in } e_2(x \leftrightarrow y)
 \]
 This is called \textit{alpha-conversion}.
- Two expressions are \textit{alpha-equivalent} if we can convert one to the other using alpha-conversions.

Examples:

\[
\begin{align*}
\text{let } x = y + z \text{ in } x &= w \\
\xrightarrow{\alpha} \text{let } u = y + z \text{ in } (x &= w) (x \leftrightarrow u) \\
= \text{let } u = y + z \text{ in } u(x \leftrightarrow u) &= w(x \leftrightarrow u) \\
= \text{let } u = y + z \text{ in } u &= w
\end{align*}
\]

since \(u \not\in \text{FV}(x = w) \).
- But
 \[
 \text{let } x = y + z \text{ in } x = w \not\xrightarrow{\alpha} \text{let } w = y + z \text{ in } w = w
 \]
because \(w \) already appears in \(x = w \).

Evaluation for let and variables

- One approach: whenever we see \(\text{let } x = e_1 \text{ in } e_2 \),
 1. evaluate \(e_1 \) to \(v_1 \)
 2. replace \(x \) with \(v_1 \) in \(e_2 \) and evaluate that

\[
\text{e} \Downarrow v \quad \text{for } L_{\text{Let}}
\]

\[
\begin{align*}
 \text{e}_1 \Downarrow v_1 & \quad \text{e}_2[v_1/x] \Downarrow v_2 \\
\text{let } x = e_1 \text{ in } e_2 \Downarrow v_2
\end{align*}
\]

- Note: We always substitute values for variables, and do not need a rule for “evaluating” a variable
- This evaluation strategy is called \textit{eager}, \textit{strict}, or (for historical reasons) \textit{call-by-value}
- This is a design choice. We will revisit this choice (and consider alternatives) later.

Substitution-based interpreter

\[
\text{type Variable} = \text{String}
\]

\[
\text{...}
\]

\[
\text{case class Var(x: Variable) extends Expr}
\]

\[
\text{case class Let(x: Variable, e1: Expr, e2: Expr) extends Expr}
\]

\[
\text{...}
\]

\[
\text{def eval(e: Expr): Value = e match {}
\]

\[
\text{...}
\]

\[
\text{case Let(x,e1,e2) => {}
 \text{val v = eval(e1);}
 \text{val e2vx = subst(e2,v,x);}
 \text{eval(e2vx)}
}\}
\]

- Note: No case for Var(x).
Types and variables

- Once we add variables to our language, how does that affect typing?
- Consider
 \[
 \text{let } x = e_1 \text{ in } e_2
 \]
 When is this well-formed? What type does it have?
- Consider a variable on its own: what type does it have?
- Different occurrences of the same variable in different scopes could have different types.
- We need a way to keep track of the types of variables

Types for variables and let, informally

- Suppose we have a way of keeping track of the types of variables (say, some kind of map or table)
- When we see a variable \(x \), look up its type in the map.
- When we see a let \(x = e_1 \text{ in } e_2 \), find out the type of \(e_1 \). Suppose that type is \(\tau_1 \). Add the information that \(x \) has type \(\tau_1 \) to the map, and check \(e_2 \) using the augmented map.
- Note: The local information about \(x \)'s type should not persist beyond typechecking its scope \(e_2 \).

Type Environments

- We write \(\Gamma \) to denote a type environment, or a finite map from variable names to types, often written as follows:
 \[
 \Gamma ::= x_1 : \tau_1, \ldots, x_n : \tau_n
 \]
- In Scala, we can use the built-in type `ListMap[Variable,Type]` for this.
 * hey, maybe that's why the Lab has all that stuff about ListMaps!
- Moreover, we write \(\Gamma(x) \) for the type of \(x \) according to \(\Gamma \) and \(\Gamma, x : \tau \) to indicate extending \(\Gamma \) with the mapping \(x \) to \(\tau \).
We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write $\Gamma \vdash e : \tau$ to indicate that e is well-formed at type τ (or just “has type τ”) in context Γ.

The rules for variables and let-binding are as follows:

\[
\Gamma \vdash e : \tau
\]

for L_{Let}

\[
\begin{array}{c}
\Gamma(x) = \tau \\
\Gamma \vdash x : \tau \\
\Gamma \vdash e_1 : \tau_1 \\
\Gamma, x : \tau_1 \vdash e_2 : \tau_2 \\
\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2
\end{array}
\]

We also need to generalize the L_{if} rules to allow contexts:

\[
\begin{array}{c}
\Gamma \vdash e : \tau \\
\Gamma \vdash e_1 : \tau_1 \\
\Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash e_1 \oplus e_2 : \tau \\
\Gamma \vdash e : \text{bool} \\
\Gamma \vdash e_1 : \tau \\
\Gamma \vdash e_2 : \tau \\
\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau
\end{array}
\]

This is straightforward: we just add Γ everywhere.

The previous rules are special cases where Γ is empty.

Examples, revisited

We can now typecheck as follows:

\[
\begin{array}{c}
x : \text{int} \vdash x : \text{int} \\
x : \text{int} \vdash 1 : \text{int} \\
\vdash \text{let } x = 1 \text{ in } x + 1 : \text{int}
\end{array}
\]

On the other hand:

\[
\begin{array}{c}
x : \text{int} \vdash x : \text{bool} \\
x : \text{int} \vdash \text{if } x \text{ then } 42 \text{ else } 17 : \text{??} \\
\vdash \text{let } x = 1 \text{ in } \text{if } x \text{ then } 42 \text{ else } 17 : \text{??}
\end{array}
\]

is not derivable because the judgment $x : \text{int} \vdash x : \text{bool}$ isn’t.

Summary

Today we’ve covered:

- Variables that can be substituted with values
- Scope and binding, alpha-equivalence
- Let-binding and how it affects typing and evaluation

Next time:

- Functions and function types
- Recursion