
Booleans and Conditionals Types

Elements of Programming Languages
Lecture 3: Booleans, conditionals, and types

James Cheney

University of Edinburgh

September 28, 2017

Booleans and Conditionals Types

Boolean expressions

So far we’ve considered only a trivial arithmetic language
LArith

Let’s extend LArith with equality tests and Boolean
true/false values:

e ::= · · · | b ∈ B | e1 == e2

We write B for the set of Boolean values {true, false}
Basic idea: e1 == e2 should evaluate to true if e1 and e2
have equal values, false otherwise

Booleans and Conditionals Types

What use is this?

Examples:

2 + 2 == 4 should evaluate to true

3× 3 + 4× 4 == 5× 5 should evaluate to true

3× 3 == 4× 7 should evaluate to false

How about true == true? Or false == true?

So far, there’s not much we can do.

We can evaluate a numerical expression for its value, or a
Boolean equality expression to true or false

We can’t write an expression whose result depends on
evaluating a comparison.

We lack an “if then else” (conditional) operation.

We also can’t “and”, “or” or negate Boolean values.

Booleans and Conditionals Types

Conditionals

Let’s also add an “if then else” operation:

e ::= · · · | b ∈ B | e1 == e2 | if e then e1 else e2

We define LIf as the extension of LArith with booleans,
equality and conditionals.

Examples:

if true then 1 else 2 should evaluate to 1
if 1 + 1 == 2 then 3 else 4 should evaluate to 3
if true then false else true should evaluate to
false

Note that if e then e1 else e2 is the first expression
that makes nontrivial “choices”: whether to evaluate the
first or second case.

Booleans and Conditionals Types

Extending evaluation

We consider the Boolean values true and false to be
values:

v ::= n ∈ N | b ∈ B

and we add the following evaluation rules:

e ⇓ v for LIf

e1 ⇓ v e2 ⇓ v
e1 == e2 ⇓ true

e1 ⇓ v1 e2 ⇓ v2 v1 6= v2
e1 == e2 ⇓ false

e ⇓ true e1 ⇓ v1
if e then e1 else e2 ⇓ v1

e ⇓ false e2 ⇓ v2
if e then e1 else e2 ⇓ v2

Booleans and Conditionals Types

Extending the interpreter

To interpret LIf , we need new expression forms:

case class Bool(n: Boolean) extends Expr

case class Eq(e1: Expr, e2:Expr) extends Expr

case class IfThenElse(e: Expr, e1: Expr, e2: Expr)

extends Expr

and different types of values (not just Ints):

abstract class Value

case class NumV(n: Int) extends Value

case class BoolV(b: Boolean) extends Value

(Technically, we could encode booleans as integers, but in
general we will want to separate out the kinds of values.)

Booleans and Conditionals Types

Extending the interpreter

// helpers

def add(v1: Value, v2: Value): Value =

(v1,v2) match {

case (NumV(v1), NumV(v2)) => NumV (v1 + v2)

}

def mult(v1: Value, v2: Value): Value = ...

def eval(e: Expr): Value = e match {

// Arithmetic

case Num(n) => NumV(n)

case Plus(e1,e2) => add(eval(e1),eval(e2))

case Times(e1,e2) => mult(eval(e1),eval(e2))

... }

Booleans and Conditionals Types

Extending the interpreter

// helper

def eq(v1: Value, v2: Value): Value = (v1,v2) match {

case (NumV(n1), NumV(n2)) => BoolV(n1 == n2)

case (BoolV(b1), BoolV(b2)) => BoolV(b1 == b2)

}

def eval(e: Expr): Value = e match {

...

case Bool(b) => BoolV(b)

case Eq(e1,e2) => eq (eval(e1), eval(e2))

case IfThenElse(e,e1,e2) => eval(e) match {

case BoolV(true) => eval(e1)

case BoolV(false) => eval(e2)

}

}

Booleans and Conditionals Types

Aside: Other Boolean operations

We can add Boolean and, or and not operations as
follows:

e ::= · · · | e1 ∧ e2 | e1 ∨ e2 | ¬(e)

with evaluation rules:

e ⇓ v

e1 ⇓ v1 e2 ⇓ v2
e1 ∧ e2 ⇓ v1 ∧B v2

e1 ⇓ v1 e2 ⇓ v2
e1 ∨ e2 ⇓ v1 ∨B v2

where again, ∧B and ∨B are the mathematical “and” and
“or” operations

These are definable in LIf , so we will leave them out to
avoid clutter.

Booleans and Conditionals Types

Aside: Shortcut operations

Many languages (e.g. C, Java) offer shortcut versions of
“and” and “or”:

e ::= · · · | e1 && e2 | e1 || e2

e1 && e2 stops early if e1 is false (since e2’s value then
doesn’t matter).

e1 || e2 stops early if e1 is true (since e2’s value then
doesn’t matter).

We can model their semantics using rules like this:

e1 ⇓ false
e1 && e2 ⇓ false

e1 ⇓ true e2 ⇓ v2
e1 && e2 ⇓ v2

e1 ⇓ true
e1 || e2 ⇓ true

e1 ⇓ false e2 ⇓ v2
e1 || e2 ⇓ v2

Booleans and Conditionals Types

What else can we do?

We can also do strange things like this:

e1 = 1 + (2 == 3)

Or this:
e2 = if 1 then 2 else 3

What should these expressions evaluate to?

There is no v such that e1 ⇓ v or e2 ⇓ v !

the Totality property for LArith fails, for LIf !

If we try to run the interpreter: we just get an error

Booleans and Conditionals Types

One answer: Conversions

In some languages (notably C, Java), there are built-in
conversion rules

For example, “if an integer is needed and a boolean is
available, convert true to 1 and false to 0”
Likewise, “if a boolean is needed and an integer is
available, convert 0 to false and other values to true”
LISP family languages have a similar convention: if we
need a Boolean value, nil stands for “false” and any
other value is treated as “true”

Conversion rules are convenient but can make programs
less predictable

We will avoid them for now, but consider principled ways
of providing this convenience later on.

Booleans and Conditionals Types

Another answer: Types

Should programs like:

1 + (2 == 3) if 1 then 2 else 3

even be allowed?

Idea: use a type system to define a subset of
“well-formed” programs

Well-formed means (at least) that at run time:

arguments to arithmetic operations (and equality tests)
should be numeric values
arguments to conditional tests should be Boolean values

Booleans and Conditionals Types

Typing rules, informally: arithmetic

Consider an expression e

If e = n, then e has type “integer”
If e = e1 + e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.
If e = e1 × e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

Booleans and Conditionals Types

Typing rules, informally: booleans, equality and

conditionals

Consider an expression e

If e = true or false, then e has type “boolean”
If e = e1 == e2, then e1 and e2 must have the same
type. If so, e has type “boolean”, else error.
If e = if e0 then e1 else e2, then e0 must have type
“boolean”, and e1 and e2 must have the same type. If
so, then e has the same type as e1 and e2, else error.

Note 1: Equality arguments have the same (unknown)
type.

Note 2: Conditional branches have the same (unknown)
type. This type determines the type of the whole
conditional expression.

Booleans and Conditionals Types

Concise notation for typing rules

We can define the possible types using a BNF grammar,
as follows:

Type 3 τ ::= int | bool
For now, we will consider only two possible types,
“integer” (int) and “boolean” (bool).

We can also use rules to describe the types of expressions:

Definition (Typing judgment ` e : τ)

We use the notation ` e : τ to say that e is a well-formed
term of type τ (or “e has type τ”).

Booleans and Conditionals Types

Typing rules, more formally: arithmetic

If e = n, then e has type “integer”

If e = e1 + e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

If e = e1 × e2, then e1 and e2 must have type “integer”.
If so, e has type “integer” also, else error.

` e : τ for LArith

n ∈ N
` n : int

` e1 : int ` e2 : int
` e1 + e2 : int

` e1 : int ` e2 : int
` e1 × e2 : int

Booleans and Conditionals Types

Typing rules, more formally: equality and

conditionals

` e : τ for LIf

b ∈ B
` b : bool

` e1 : τ ` e2 : τ
` e1 == e2 : bool

` e : bool ` e1 : τ ` e2 : τ
` if e then e1 else e2 : τ

We indicate that the types of subexpressions of == must
be equal by using the same τ

Similarly, we indicate that the result of a conditional has
the same type as the two branches using the same τ for
all three

Booleans and Conditionals Types

Typing judgments: examples

` 1 : int ` 2 : int
` 1 + 2 : int ` 4 : int
` 1 + 2 == 4 : bool

...
` 1 + 2 == 4 : bool ` 42 : int ` 17 : int
` if 1 + 2 == 4 then 42 else 17 : int

...
` if 1 + 2 == 4 then 42 else 17 : int ` 100 : int
` (if 1 + 2 == 4 then 42 else 17) + 100 : int

Booleans and Conditionals Types

Typing judgments: non-examples

But we also want some things not to typecheck:

` 1 == true : τ

` if 42 then e1 else e2 : τ

These judgments do not hold for any e1, e2, τ .

Booleans and Conditionals Types

Fundamental property of typing

The point of the typing judgment is to ensure soundness:
if an expression is well-typed, then it evaluates “correctly”

That is, evaluation is well-behaved on well-typed
programs.

Theorem (Type soundness for LIf)

If ` e : τ then e ⇓ v and ` v : τ .

For a language like LIf , soundness is fairly easy to prove
by induction on expressions. We’ll present soundness for
more realistic languages in detail later.

Booleans and Conditionals Types

Static vs. dynamic typing

Some languages proudly advertise that they are “static”
or “dynamic”

Static typing:
not all expressions are well-formed; some sensible
programs are not allowed
types can be used to catch errors, improve performance

Dynamic typing:
all expressions are well-formed; any program can be run
type errors arise dynamically; higher overhead for
tagging and checking

These are rarely-realized extremes: most “statically”
typed languages handle some errors dynamically

In contrast, any “dynamically” typed language can be
thought of as a statically typed one with just one type.

Booleans and Conditionals Types

Summary

In this lecture we covered:

Boolean values, equality tests and conditionals
Extending the interpreter to handle them
Typing rules

Next time:

Variables and let-binding
Substitution, environments and type contexts

