Boolean expressions

- So far we’ve considered only a trivial arithmetic language L_{Arith}.
- Let’s extend L_{Arith} with equality tests and Boolean true/false values:

 $$e ::= \cdots \mid b \in \mathbb{B} \mid e_1 == e_2$$

- We write \mathbb{B} for the set of Boolean values $\{\text{true}, \text{false}\}$.
- Basic idea: $e_1 == e_2$ should evaluate to true if e_1 and e_2 have equal values, false otherwise.

What use is this?

- Examples:
 - $2 + 2 == 4$ should evaluate to true.
 - $3 \times 3 + 4 \times 4 == 5 \times 5$ should evaluate to true.
 - $3 \times 3 == 4 \times 7$ should evaluate to false.
 - How about $\text{true} == \text{true}$? Or $\text{false} == \text{true}$?

- So far, there’s not much we can do.
- We can evaluate a numerical expression for its value, or a Boolean equality expression to true or false.
- We can’t write an expression whose result depends on evaluating a comparison.
- We lack an “if then else” (conditional) operation.
- We also can’t “and”, “or” or negate Boolean values.

Conditionals

- Let’s also add an “if then else” operation:

 $$e ::= \cdots \mid b \in \mathbb{B} \mid e_1 == e_2 \mid \text{if } e \text{ then } e_1 \text{ else } e_2$$

- We define L_{If} as the extension of L_{Arith} with booleans, equality and conditionals.
- Examples:
 - if true then 1 else 2 should evaluate to 1.
 - if $1 + 1 == 2$ then 3 else 4 should evaluate to 3.
 - if true then false else true should evaluate to false.

- Note that if e then e_1 else e_2 is the first expression that makes nontrivial “choices”: whether to evaluate the first or second case.
We consider the Boolean values true and false to be values:

\[v ::= n \in \mathbb{N} \mid b \in \mathbb{B} \]

and we add the following evaluation rules:

\[e \downarrow v \]

- \(e_1 \downarrow v \) \(e_2 \downarrow v \)
- \(e_1 = e_2 \downarrow \text{true} \)
- \(e_1 = e_2 \downarrow \text{false} \)
- \(e \downarrow \text{true} \)
- \(e \downarrow \text{false} \)
- \if e \then e_1 \else e_2 \downarrow v_1 \)
- \if e \then e_1 \else e_2 \downarrow v_2 \)

To interpret \(L_{\text{if}} \), we need new expression forms:

- case class \(\text{Bool}(n: \text{Boolean}) \) extends Expr
- case class \(\text{Eq}(e_1: \text{Expr}, e_2: \text{Expr}) \) extends Expr
- case class \(\text{IfThenElse}(e: \text{Expr}, e_1: \text{Expr}, e_2: \text{Expr}) \) extends Expr

and different types of values (not just Ints):

- abstract class \(\text{Value} \)
- case class \(\text{NumV}(n: \text{Int}) \) extends Value
- case class \(\text{BoolV}(b: \text{Boolean}) \) extends Value

(Technically, we could encode booleans as integers, but in general we will want to separate out the kinds of values.)

```
// helpers
def add(v1: Value, v2: Value): Value =
  (v1,v2) match {
    case (NumV(n1), NumV(n2)) => NumV (n1 + n2)
  }

def mult(v1: Value, v2: Value): Value = ...

def eval(e: Expr): Value = e match {
  // Arithmetic
  case Num(n) => NumV(n)
  case Plus(e1,e2) => add(eval(e1),eval(e2))
  case Times(e1,e2) => mult(eval(e1),eval(e2))
  ... }
```

```scala
// helper
def eq(v1: Value, v2: Value): Value = (v1,v2) match {
  case (NumV(n1), NumV(n2)) => BoolV(n1 == n2)
  case (BoolV(b1), BoolV(b2)) => BoolV(b1 == b2)
}

def eval(e: Expr): Value = e match {
  ...
  case Bool(b) => BoolV(b)
  case Eq(e1,e2) => eq (eval(e1), eval(e2))
  case IfThenElse(e,e1,e2) => eval(e) match {
    case BoolV(true) => eval(e1)
    case BoolV(false) => eval(e2)
  }
}
```
Aside: Other Boolean operations

- We can add Boolean and, or and not operations as follows:
 \[
 e ::= \cdots | e_1 \land e_2 | e_1 \lor e_2 | \neg(e)
 \]
- with evaluation rules:
 \[
 \begin{array}{c}
 e_1 \downarrow v_1 \quad e_2 \downarrow v_2 \\
 e_1 \land e_2 \downarrow v_1 \land_B v_2 \\
 e_1 \lor e_2 \downarrow v_1 \lor_B v_2 \\
 \end{array}
 \]
- where again, \land_B and \lor_B are the mathematical “and” and “or” operations
- These are definable in L_{If}, so we will leave them out to avoid clutter.

What else can we do?

- We can also do strange things like this:
 \[
 e_1 = 1 + (2 == 3)
 \]
- Or this:
 \[
 e_2 = \text{if } 1 \text{ then } 2 \text{ else } 3
 \]
- What should these expressions evaluate to?
- There is no v such that $e_1 \downarrow v$ or $e_2 \downarrow v$!
 - the Totality property for L_{Arith} fails, for L_{If}!
- If we try to run the interpreter: we just get an error

One answer: Conversions

- In some languages (notably C, Java), there are built-in conversion rules
 - For example, “if an integer is needed and a boolean is available, convert true to 1 and false to 0”
 - Likewise, “if a boolean is needed and an integer is available, convert 0 to false and other values to true”
 - LISP family languages have a similar convention: if we need a Boolean value, nil stands for “false” and any other value is treated as “true”
- Conversion rules are convenient but can make programs less predictable
- We will avoid them for now, but consider principled ways of providing this convenience later on.

Aside: Shortcut operations

- Many languages (e.g. C, Java) offer shortcut versions of “and” and “or”:
 \[
 e ::= \cdots | e_1 \& e_2 | e_1 \| e_2
 \]
- $e_1 \& e_2$ stops early if e_1 is false (since e_2’s value then doesn’t matter).
- $e_1 \| e_2$ stops early if e_1 is true (since e_2’s value then doesn’t matter).
- We can model their semantics using rules like this:
 \[
 \begin{array}{c}
 e_1 \downarrow \text{false} \\
 e_1 \& e_2 \downarrow \text{false} \\
 e_1 \downarrow \text{true} \\
 e_1 \| e_2 \downarrow \text{true} \\
 \end{array}
 \]
 \[
 \begin{array}{c}
 e_1 \downarrow \text{false} \\
 e_1 \& e_2 \downarrow \text{false} \\
 e_1 \downarrow \text{true} \\
 e_1 \| e_2 \downarrow \text{false} \\
 \end{array}
 \]
Another answer: Types

- Should programs like:

 \[1 + (2 == 3) \text{ if } 1 \text{ then } 2 \text{ else } 3 \]

 even be allowed?

- Idea: use a type system to define a subset of “well-formed” programs

- Well-formed means (at least) that at run time:

 - arguments to arithmetic operations (and equality tests) should be numeric values
 - arguments to conditional tests should be Boolean values

Typing rules, informally: arithmetic

- Consider an expression \(e \)

 - If \(e = n \), then \(e \) has type “integer”
 - If \(e = e_1 + e_2 \), then \(e_1 \) and \(e_2 \) must have type “integer”. If so, \(e \) has type “integer” also, else error.
 - If \(e = e_1 \times e_2 \), then \(e_1 \) and \(e_2 \) must have type “integer”. If so, \(e \) has type “integer” also, else error.

Typing rules, informally: booleans, equality and conditionals

- Consider an expression \(e \)

 - If \(e = \text{true} \) or \(\text{false} \), then \(e \) has type “boolean”
 - If \(e = e_1 == e_2 \), then \(e_1 \) and \(e_2 \) must have the same type. If so, \(e \) has type “boolean”, else error.
 - If \(e = \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \), then \(e_0 \) must have type “boolean”, and \(e_1 \) and \(e_2 \) must have the same type. If so, then \(e \) has the same type as \(e_1 \) and \(e_2 \), else error.

- Note 1: Equality arguments have the same (unknown) type.
- Note 2: Conditional branches have the same (unknown) type. This type determines the type of the whole conditional expression.

Concise notation for typing rules

- We can define the possible types using a BNF grammar, as follows:

 \[\text{Type } \ni \tau ::= \text{int} \mid \text{bool} \]

 For now, we will consider only two possible types, “integer” (int) and “boolean” (bool).

- We can also use rules to describe the types of expressions:

 Definition (Typing judgment \(\vdash e : \tau \))

 We use the notation \(\vdash e : \tau \) to say that \(e \) is a well-formed term of type \(\tau \) (or “\(e \) has type \(\tau \)”).
Typing rules, more formally: arithmetic

- If \(e = n \), then \(e \) has type “integer”
- If \(e = e_1 + e_2 \), then \(e_1 \) and \(e_2 \) must have type “integer”.

 If so, \(e \) has type “integer” also, else error.
- If \(e = e_1 \times e_2 \), then \(e_1 \) and \(e_2 \) must have type “integer”.

 If so, \(e \) has type “integer” also, else error.

\[\vdash e : \tau \text{ for } L_{\text{Arith}} \]

\[
\begin{array}{c}
\vdash n : \text{int} \\
\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
\vdash e_1 + e_2 : \text{int} \\
\end{array}
\]

Typing rules, more formally: equality and conditionals

- We indicate that the types of subexpressions of \(== \) must be equal by using the same \(\tau \)
- Similarly, we indicate that the result of a conditional has the same type as the two branches using the same \(\tau \) for all three.

\[\vdash e : \tau \text{ for } L_{\text{If}} \]

\[
\begin{array}{c}
\vdash b : \text{bool} \\
\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
\vdash e : \text{bool} \\
\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \\
\vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau \\
\end{array}
\]

Typing judgments: examples

\[\vdash 1 : \text{int} \quad \vdash 2 : \text{int} \]
\[\vdash 1 + 2 : \text{int} \quad \vdash 4 : \text{int} \]
\[\vdash 1 + 2 == 4 : \text{bool} \]

Typing judgments: non-examples

But we also want some things **not** to typecheck:

\[\vdash 1 == \text{true} : \tau \]
\[\vdash \text{if } 42 \text{ then } e_1 \text{ else } e_2 : \tau \]

These judgments do not hold for any \(e_1, e_2, \tau \).
Fundamental property of typing

- The point of the typing judgment is to ensure **soundness**: if an expression is well-typed, then it evaluates “correctly”.
- That is, evaluation is well-behaved on well-typed programs.

Theorem (Type soundness for L_{if})

\[
\text{If } \Gamma \vdash e : \tau \text{ then } e \Downarrow v \text{ and } \Gamma \vdash v : \tau.
\]

- For a language like L_{if}, soundness is fairly easy to prove by induction on expressions. We’ll present soundness for more realistic languages in detail later.

Static vs. dynamic typing

- Some languages proudly advertise that they are “static” or “dynamic”.

 - **Static typing:**
 - not all expressions are well-formed; some sensible programs are not allowed
 - types can be used to catch errors, improve performance

 - **Dynamic typing:**
 - all expressions are well-formed; any program can be run
 - type errors arise dynamically; higher overhead for tagging and checking

- These are rarely-realized extremes: most “statically” typed languages handle some errors dynamically.

- In contrast, any “dynamically” typed language can be thought of as a statically typed one with just one type.

Summary

- In this lecture we covered:
 - Boolean values, equality tests and conditionals
 - Extending the interpreter to handle them
 - Typing rules

- Next time:
 - Variables and let-binding
 - Substitution, environments and type contexts