Today

Elements of Programming Languages
Lecture 1: Abstract syntax

James Cheney
University of Edinburgh
September 21, 2017

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

LArith

We will start out with a very simple (almost trivial) “programming language” called LArith to illustrate these concepts.

Examples:

- 1 + 2 ---> 3
- 1 + 2 * 3 ---> 7
- (1 + 2) * 3 ---> 9

Concrete vs. abstract syntax:

- Concrete syntax: the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret strings as programs

- Abstract syntax: the “essential” constructs of a programming language
 - Specify using so-called Backus Naur Form (BNF) grammars
 - Used in specifications and implementations to describe the abstract syntax trees of a language.
CFG vs. BNF

- Context-free grammar giving concrete syntax for expressions

 \[E \rightarrow E \text{ PLUS } F | F \]
 \[F \rightarrow F \text{ TIMES } F | \text{ NUM } | \text{ LPAREN } E \text{ RPAREN} \]

- Needs to handle precedence, parentheses, etc.
- Tokenization (+ → PLUS, etc.), comments, whitespace usually handled by a separate stage

BNF grammars

- BNF grammar giving abstract syntax for expressions

 \[Expr \ni e ::= e_1 + e_2 | e_1 \times e_2 | n \in \mathbb{N} \]

 This says: there are three kinds of expressions
 - Additions \(e_1 + e_2 \), where two expressions are combined with the + operator
 - Multiplications \(e_1 \times e_2 \), where two expressions are combined with the \(\times \) operator
 - Numbers \(n \in \mathbb{N} \)

- Much like CFG rules, we can "derive" more complex expressions:

 \[e \rightarrow e_1 + e_2 \rightarrow 3 + e_2 \rightarrow 3 + (e_3 \times e_4) \rightarrow \cdots \]

BNF conventions

- We will usually use BNF-style rules to define abstract syntax trees
 - and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.

- Convention: the subscripts on occurrences of \(e \) on the RHS don’t affect the meaning, just for readability

- Convention: we will freely use parentheses in abstract syntax notation to disambiguate

- e.g.

 \((1 + 2) \times 3\) vs. \(1 + (2 \times 3)\)

Abstract Syntax Trees (ASTs)

- We view a BNF grammar to define a collection of abstract syntax trees, for example:

These can be represented in a program as trees, or in other ways (which we will cover in due course)
Languages for examples

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
 - Sometimes others, to discuss specific features
- You do not need to already know all these languages!

ASTs in Java

- In Java ASTs can be defined using a class hierarchy:
  ```java
  abstract class Expr {}
  class Num extends Expr {
    public int n;
    Num(int _n) {
      n = _n;
    }
  }
  class Times extends Expr {... // similar
  }
  ```

- Traverse ASTs by adding a method to each class:
  ```java
  abstract class Expr {
    abstract public int size();
  }
  class Num extends Expr {
    public int size() {
      return 1;
    }
  }
  class Plus extends Expr {
    public int size() {
      return e1.size() + e2.size() + 1;
    }
  }
  class Times extends Expr {... // similar
  }
Concrete vs. abstract syntax
Abstract syntax trees
Structural Induction
Concrete vs. abstract syntax
Abstract syntax trees
Structural Induction

**ASTs in Python**

- Python is similar, but shorter (no types):
  ```python
class Expr:
 pass # "abstract"
class Num(Expr):
 def __init__(self,n):
 self.n = n
def size(self): return 1
class Plus(Expr):
 def __init__(self,e1,e2):
 self.e1 = e1
 self.e2 = e2
def size(self):
 return self.e1.size() + self.e2.size() + 1
class Times(Expr): # similar...
  ```

**ASTs in Haskell**

- In Haskell, ASTs are easily defined as *datatypes*:
  ```haskell
data Expr = Num Integer
 | Plus Expr Expr
 | Times Expr Expr
```

- Likewise one can easily write functions to traverse them:
  ```haskell
size :: Expr -> Integer
size (Num n) = 1
size (Plus e1 e2) =
 (size e1) + (size e2) + 1
size (Times e1 e2) =
 (size e1) + (size e2) + 1
```

**ASTs in Scala**

- In Scala, can define ASTs conveniently using *case classes*:
  ```scala
abstract class Expr
case class Num(n: Integer) extends Expr
case class Plus(e1: Expr, e2: Expr) extends Expr
case class Times(e1: Expr, e2: Expr) extends Expr
```

- Again one can easily write functions to traverse them using pattern matching:
  ```scala
def size (e: Expr): Int = e match {
 case Num(n) => 1
 case Plus(e1,e2) =>
 size(e1) + size(e2) + 1
 case Times(e1,e2) =>
 size(e1) + size(e2) + 1
 }
```

**Creating ASTs**

- Java:
  ```java
 new Plus(new Num(2), new Num(2))
  ```

- Python:
  ```python
 Plus(Num(2),Num(2))
  ```

- Haskell:
  ```haskell
 Plus(Num(2),Num(2))
  ```

- Scala: (the "new" is optional for case classes:)
  ```scala
 new Plus(new Num(2),new Num(2))
 Plus(Num(2),Num(2))
  ```
Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end.

Some languages, notably LISP/Scheme/Racket, eschew infix notation.

All programs are essentially so-called S-Expressions:

\[ s ::= a \mid (a \ s_1 \ \cdots \ s_n) \]

so their concrete syntax is very close to abstract syntax.

For example:

\[
\begin{align*}
1 + 2 & \quad \longrightarrow \quad (+ \ 1 \ 2) \\
1 + 2 \ast 3 & \quad \longrightarrow \quad (+ \ 1 \ (* \ 2 \ 3)) \\
(1 + 2) \ast 3 & \quad \longrightarrow \quad (* \ (+ \ 1 \ 2) \ 3)
\end{align*}
\]

The three most important reasoning techniques for programming languages are:

- (Mathematical) induction
- (Structural) induction
- (Rule) induction

We will briefly review the first and present structural induction.

We will cover rule induction later.
The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
  - (Mathematical) induction (over \( \mathbb{N} \))
  - (Structural) induction (over ASTs)
  - (Rule) induction (over derivations)
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

Recall the principle of mathematical induction

Mathematical induction

Given a property \( P \) of natural numbers, if:

- \( P(0) \) holds
- for any \( n \in \mathbb{N} \), if \( P(n) \) holds then \( P(n+1) \) also holds

Then \( P(n) \) holds for all \( n \in \mathbb{N} \).

Induction over expressions

A similar principle holds for expressions:

Induction on structure of expressions

Given a property \( P \) of expressions, if:

- \( P(n) \) holds for every number \( n \in \mathbb{N} \)
- for any expressions \( e_1, e_2 \), if \( P(e_1) \) and \( P(e_2) \) holds then \( P(e_1 + e_2) \) also holds
- for any expressions \( e_1, e_2 \), if \( P(e_1) \) and \( P(e_2) \) holds then \( P(e_1 \times e_2) \) also holds

Then \( P(e) \) holds for all expressions \( e \).

Note that we are performing induction over abstract syntax trees, not numbers!

Proof of expression induction principle

Define the \textit{size} of an expression in the obvious way:

\[
\text{size}(n) = 1
\]
\[
\text{size}(e_1 + e_2) = \text{size}(e_1) + \text{size}(e_2) + 1
\]
\[
\text{size}(e_1 \times e_2) = \text{size}(e_1) + \text{size}(e_2) + 1
\]

Given \( P(\_\_) \) satisfying the assumptions of expression induction, we prove the property

\[
Q(n) = \text{for all } e \text{ with size}(e) < n \text{ we have } P(e)
\]

Since any expression \( e \) has a finite size, \( P(e) \) holds for any expression.
Proof of expression induction principle

We prove that $Q(n)$ holds for all $n$ by induction on $n$:

- The base case $n = 0$ is vacuous.
- For $n + 1$, then assume $Q(n)$ holds and consider any $e$ with $\text{size}(e) < n + 1$. Then there are three cases:
  - if $e = m \in \mathbb{N}$ then $P(e)$ holds by part 1 of expression induction principle.
  - if $e = e_1 + e_2$ then $\text{size}(e_1) < \text{size}(e) \leq n$ and similarly for $\text{size}(e_2) < \text{size}(e) \leq n$. So, by induction, $P(e_1)$ and $P(e_2)$ hold, and by part 2 of expression induction principle $P(e)$ holds.
  - if $e = e_1 \times e_2$, the same reasoning applies.

Summary

- We covered:
  - Concrete vs. Abstract syntax
  - Abstract syntax trees
  - Abstract syntax of $L_{\text{Arith}}$ in several languages
  - Structural induction over syntax trees
- This might seem like a lot to absorb, but don’t worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
  - Evaluation
  - A simple interpreter
  - Operational semantics rules