Elements of Programming Languages
Tutorial 1: Abstract syntax trees, evaluation and typechecking
Week 3 (October 3–7, 2016)

Starred exercises (*) are more challenging. Please try all unstarred exercises before the tutorial meeting.

1. **Pattern matching.** For this problem, you should use the Scala definition of L_{Arith} abstract syntax trees presented in the lectures:

 abstract class Expr
 case class Num(n: Integer) extends Expr
 case class Plus(e1: Expr, e2: Expr) extends Expr
 case class Times(e1: Expr, e2: Expr) extends Expr

 (a) Write a Scala function evens[A]: List[A] => List[A] that traverses a list and returns all of the elements in even-numbered positions. For example, evens(List('a','b','c','d','e','f')) = List('a','c','e'). The solution should use pattern-matching rather than indexing into the list.

 (b) Write a Scala function allplus: Expr => Boolean that traverses a L_{Arith} term and returns true if all of the operations in it are additions, false otherwise. (For this problem, you may want to use the Scala Boolean AND operation \&\&.)

 (c) Write Scala function consts: Expr => List[Int] that traverses a L_{Arith} expression and constructs a list containing all of the numerical constants in the expression. (For this problem, you may want to use the Scala list-append operation ++.)

 (d) Write Scala function revtimes: Expr => Expr that traverses a L_{Arith} expression and reverses the order of all multiplication operations (i.e. e_1 \times e_2 \text{ becomes } e_2 \times e_1).

 (e) (*) Write a Scala function printExpr: Expr => String that traverses an expression and converts it into a (fully parenthesised) string. For example:

 scala> printExpr(Times(Plus(Num(1), Num(2)), Times(Num(3), Num(4))))
 res0: String = (((1 + 2) * (3 * 4))

2. **Evaluation derivations.** Recall the evaluation rules covered in lectures:

 \[
 e \downarrow v
 \]
Write out derivation trees for the following expressions:

(a) \(6 \times 9\)
(b) \(3 \times 3 + 4 \times 4 == 5\)
(c) \((\star)\) if \(1 + 1 == 2\) then \(2 + 3\) else \(2 \times 3\)
(d) \((\star)\) if \(1 + 1 == 2\) then \(3\) else \(4\) + 5

3. Typechecking derivations. Recall the typechecking rules covered in lectures:

\[
\vdash e : \tau
\]

- \(n \in \mathbb{N}\) : \(\vdash n : \text{int}\)
- \(b \in \mathbb{B}\) : \(\vdash b : \text{bool}\)
- \(e_1 == e_2\) : \(\vdash e_1 == e_2 : \text{bool}\)
- \(\text{if } e \text{ then } e_1 \text{ else } e_2\) : \(\vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau\)

Write out typing derivations for the following judgments:

(a) \(\vdash 6 \times 9 : \text{int}\)
(b) \((\star)\) \(\vdash (\text{if } 1 + 1 == 2 \text{ then } 3 \text{ else } 4) + 5 : \text{int}\)

4. \((\star)\) Nondeterminism. Suppose we add the following construct \(e_1 \Box e_2\) to \(L_{\text{Arith}}\):

\[e ::= e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}\]

\[\mid \text{true} \mid \text{false} \mid e_1 == e_2 \mid \text{if } e \text{ then } e_1 \text{ else } e_2\]

\[\mid e_1 \Box e_2\]

Informally, the semantics of \(e_1 \Box e_2\) is that we evaluate either \(e_1\) or \(e_2\) nondeterministically. To model this we extend the evaluation rules as follows:

\[
e \Downarrow v
\]

(a) What property of \(L_{\text{Arith}}\) (among those discussed in Lecture 2) is violated after we add \(\Box\)?
(b) Write a sensible rule for typechecking \(e_1 \Box e_2\).
(c) For each of the following expressions \(e\), list all of the possible values \(v\) such that \(e \Downarrow v\) is derivable:

i. \((1\Box 2) \times (3\Box 4)\)

ii. if (true\Box false) then 1 else 2

d) Define an expression \(e\) and a value \(v\) such that there are two different derivations of the judgment \(e \Downarrow v\). (What does it mean for the derivations to be different?)