Consider the humble identity function

- A function that returns its input:
  ```scala
def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int,String)) = x
```
- Does the same thing no matter what the type is.
- But we cannot just write this:
  ```scala
  def id(x) = x
  ```
 (In Scala, every variable needs to have a type.)

Another example

- Consider a pair “swap” operation:
  ```scala
def swapInt(p: (Int,Int)) = (p._2,p._1)
def swapString(p: (String,String)) = (p._2,p._1)
def swapIntString(p: (Int,String)) = (p._2,p._1)
```
- Again, the code is the same in both cases; only the types differ.
- But we can’t write
  ```scala
  def swap(p) = (p._2,p._1)
  ```
 What type should \(p \) have?
Another example

Consider a higher-order function that calls its argument twice:

```scala
def twiceInt(f: Int => Int) = {x: Int => f(f(x))}
def twiceStr(f: String => String) = {x: String => f(f(x))}
```

Again, the code is the same in both cases; only the types differ.

But we can’t write

```scala
def twice(f) = {x => f(f(x))}
```

What types should \(f \) and \(x \) have?

Type parameters

In Scala, function definitions can have type parameters

```scala
def id[A](x: A): A = x
```

This says: given a type \(A \), the function \(\text{id}[A] \) takes an \(A \) and returns an \(A \).

```scala
def swap[A,B](p: (A,B)): (B,A) = (p._2,p._1)
```

This says: given types \(A,B \), the function \(\text{swap}[A,B] \) takes a pair \((A,B) \) and returns a pair \((B,A) \).

```scala
def twice[A](f: A => A): A => A = {x:A => f(f(x))}
```

This says: given a type \(A \), the function \(\text{twice}[A] \) takes a function \(f: A \Rightarrow A \) and returns a function of type \(A \Rightarrow A \).

Polymorphism: More examples

Polymorphism is even more useful in combination with higher-order functions.

Recall \(\text{compose} \) from the lab:

```scala
def compose[A,B,C](f: A => B, g: B => C) = {x:A => g(f(x))}
```

Likewise, the map and filter functions:

```scala
def map[A,B](f: A => B, x: List[A]): List[B] = ...
def filter[A](f: A => Bool, x: List[A]): List[A] = ...
```

(though in Scala these are usually defined as methods of \(\text{List}[A] \) so the \(A \) type parameter and \(x \) variable are implicit)
Formalization

- We add type variables A, B, C, \ldots, type abstractions, type applications, and polymorphic types:

 $\begin{align*}
 e & ::= \cdots | \forall A. \; e \mid e[\tau] \\
 \tau & ::= \cdots | A \mid \forall A. \; \tau
 \end{align*}$

- We also use (capture-avoiding) substitution of types for type variables in expressions and types.
- The type $\forall A. \; \tau$ is the type of expressions that can have type $\tau[\tau/A]$ for any choice of A. (A is bound in τ.)
- The expression $\forall A. \; e$ introduces a type variable for use in e. (Thus, A is bound in any type annotations in e.)
- The expression $e[\tau]$ instantiates a type abstraction
- Define L_{Poly} to be the extension of L_{Data} with these features

Formalization: Type and type variables

- Complication: Types now have variables. What is their scope? When is a type variable in scope in a type?
- The polymorphic type $\forall A. \tau$ binds A in τ.
- We write $A \not\in \tau$ to say that type variable A is fresh for τ:

 $\begin{align*}
 A \not\in B & \quad A \not\in \tau_1 \quad A \not\in \tau_2 \quad A \not\in \tau_1 \quad A \not\in \tau_2 \\
 A \not\in B \quad A \not\in \tau_1 \times \tau_2 & \quad A \not\in \tau_1 \rightarrow \tau_2 \\
 A \not\in \tau_1 \quad A \not\in \tau_2 & \quad A \not\in \forall A. \tau \\
 A \not\in \tau_1 + \tau_2 & \quad A \not\in \forall B. \tau
 \end{align*}$

- $A \not\in \tau_1, \ldots, \tau_n \iff A \not\in \tau_1 \cdots A \not\in \tau_n$
- Alpha-equivalence and type substitution are defined similarly to expressions.

Formalization: Typechecking polymorphic expressions

- To model evaluation, we add type abstraction as a possible value form:

 $\begin{align*}
 v & ::= \cdots | \forall A. \; e
 \end{align*}$

 with rules similar to those for λ and application:

 $\begin{align*}
 e \Downarrow \tau \\
 \tau_0 \Downarrow \tau/A \\
 \tau_0[\tau/A] \Downarrow \nu \quad \forall A. \; e_0 \Downarrow \nu \\
 \forall A. \; e \Downarrow \nu
 \end{align*}$

- In L_{Poly}, type information is irrelevant at run time.
 (Other languages, including Scala, do retain some run time type information.)
Convenient notation

- We can augment the syntactic sugar for function definitions to allow type parameters:

  ```latex
  \text{let fun } f[A](x : \tau) = e \text{ in } ...
  ```

- This is equivalent to:

  ```latex
  \text{let } f = \Lambda A. \lambda x : \tau. e \text{ in } ...
  ```

- In either case, a function call can be written as

  ```latex
  f[\tau](x)
  ```

Examples in LPoly

- Identity function

  ```latex
  id = \Lambda A. \lambda x : A. x
  ```

- Swap

  ```latex
  swap = \Lambda A. \Lambda B. \lambda x : A \times B. (\text{snd } x, \text{fst } x)
  ```

- Twice

  ```latex
  twice = \Lambda A. \lambda f : A \rightarrow A. \lambda x : A. f(f(x))
  ```

- For example:

  ```latex
  \text{swap}[\text{int}][\text{str}](1, "a") \downarrow ("a", 1)
  \text{twice}[\text{int}](\lambda x : 2 \times x)(2) \downarrow 8
  ```

Examples, typechecked

- List[_] is an example: given a type T, it constructs another type List[T]

  ```latex
  \text{deftype List}[A] = [\text{Nil} : \text{unit}; \text{Cons} : A \times \text{List}[A]]
  ```

Lists and parameterized types

- In Scala (and other languages such as Haskell and ML), type abbreviations and definitions can be \textit{parameterized}.

- List[_] is an example: given a type T, it constructs another type List[T]

  ```latex
  \text{deftype List}[A] = [\text{Nil} : \text{unit}; \text{Cons} : A \times \text{List}[A]]
  ```

- Such types are sometimes called \textit{type constructors}

- (See tutorial questions on lists)

- We will revisit parameterized types when we cover modules
Other forms of polymorphism

- Polymorphism refers to several related techniques for “code reuse” or “overloading”
 - Subtype polymorphism: reuse based on inclusion relations between types.
 - Parametric polymorphism: abstraction over type parameters
 - Ad hoc polymorphism: Reuse of same name for multiple (potentially type-dependent) implementations (e.g. overloading + for addition on different numeric types, string concatenation etc.)
- These have some overlap
- We will discuss overloading, subtyping and polymorphism (and their interaction) in future lectures.

Hindley-Milner type inference

- A very influential approach was developed independently by J. Roger Hindley (in logic) and Robin Milner (in CS).
- Idea: Typecheck an expression symbolically, collecting “constraints” on the unknown type variables
- If the constraints have a common solution then this solution is a most general way to type the expression
 - Constraints can be solved using unification, an equation solving technique from automated reasoning/logic programming
- If not, then the expression has a type error

As an example, consider swap defined as follows:

\[\lambda x : A. (\text{snd } x, \text{fst } x) : B \]

\(A, B \) are the as yet unknown types of \(x \) and \(\text{swap} \).

- A lambda abstraction creates a function: hence \(B = A \rightarrow A_1 \) for some \(A_1 \) such that \(x : A \vdash (\text{snd } x, \text{fst } x) : A_1 \)
- A pair constructs a pair type: hence \(A_1 = A_2 \times A_3 \) where \(x : A \vdash \text{snd } x : A_2 \) and \(x : A \vdash \text{fst } x : A_3 \)
- This can only be the case if \(x : A_3 \times A_2 \), i.e. \(A = A_3 \times A_2 \).
- Solving the constraints: \(A = A_3 \times A_2, A_1 = A_2 \times A_3 \) and so \(B = A_2 \times A_3 \rightarrow A_3 \times A_2 \).
Let-bound polymorphism [Non-examinable]

- An important additional idea was introduced in the ML programming language, to avoid the need to explicitly introduce type variables and apply polymorphic functions to type arguments.
- When a function is defined using `let fun` (or `let rec`), first infer a type:
 \[\text{swap} : A_2 \times A_3 \rightarrow A_3 \times A_2 \]
- Then abstract over all of its free type parameters.
 \[\text{swap} : \forall A. \forall B. A \times B \rightarrow B \times A \]
- Finally, when a polymorphic function is applied, infer the missing types.
 \[\text{swap}(1,"a") \leadsto \text{swap}[\text{int}][\text{str}](1,"a") \]

ML-style inference: strengths and weaknesses

- **Strengths**
 - Elegant and effective
 - Requires no type annotations at all
- **Weaknesses**
 - Can be difficult to explain errors
 - In theory, can have exponential time complexity (in practice, it runs efficiently on real programs)
 - Very sensitive to extension: subtyping and other extensions to the type system tend to require giving up some nice properties
 - (We are intentionally leaving out a lot of technical detail — HM type inference is covered in more detail in ITCS.)

Type inference in Scala

- Scala does not employ full HM type inference, but uses many of the same ideas.
- Type information in Scala flows from function arguments to their results
 - `def f[A](x: List[A]): List[(A,A)] = ...`
 - `f(List(1,2,3)) // A must be Int, don’t need f[Int]`
- and sequentially through statement blocks
 - `var l = List(1,2,3); // l: List[Int] inferred`
 - `var y = f(l); // y : List[(Int,Int)] inferred`

- Type information does **not** flow across arguments in the same argument list
 - `def map[A](f: A => B, l: List[A]): List[B] = ...`
 - `scala> map({x: Int => x + 1}, List(1,2,3))
 res0: List[Int] = List(2, 3, 4)`
- But it **can** flow from earlier argument lists to later ones:
 - `def map2[A](l: List[A])(f: A => B): List[B] = ...`
 - `scala> map2(List(1,2,3)) {x => x + 1}
 res1: List[Int] = List(2, 3, 4)`
Type inference in Scala: strengths and limitations

- Compared to Java, many fewer annotations needed
- Compared to ML, Haskell, etc. many more annotations needed
- The reason has to do with Scala’s integration of polymorphism and subtyping
 - needed for integration with Java-style object/class system
 - Combining subtyping and polymorphism is tricky (type inference can easily become undecidable)
- Scala chooses to avoid global constraint-solving and instead propagate type information locally

Summary

- Today we covered:
 - The idea of thinking of the same code as having many different types
 - Parametric polymorphism: makes the type parameter explicit and abstract
 - Brief coverage of type inference.
- Next time:
 - Programs, modules, and interfaces