Overview

- Last time:
 - Simple data structures: pairing (product types), choice (sum types)
- Today:
 - Records (generalizing products), variants (generalizing sums) and pattern matching
 - Subtyping

Records

- Records generalize pairs to n-tuples with named fields.

 $$e ::= \cdots | \langle l_1 = e_1, \ldots, l_n = e_n \rangle \mid e.l$$

 $$v ::= \cdots | \langle l_1 = v_1, \ldots, l_n = v_n \rangle$$

 $$\tau ::= \cdots | \langle l_1 : \tau_1, \ldots, l_n : \tau_n \rangle$$

- Examples:

 $$\langle \text{fst}=1, \text{snd}="\text{forty-two}" \rangle. \text{snd} \mapsto "\text{forty-two}"
 \langle x=3.0, y=4.0, \text{length}=5.0 \rangle$$

- Record fields can be (first-class) functions too:

 $$\langle x=3.0, y=4.0, \text{length} = \lambda(x, y). \text{sqrt}(x \times x + y \times y) \rangle$$

Named variants

- As mentioned earlier, named variants generalize binary variants just as records generalize pairs

 $$e ::= \cdots | C_1(e) \mid \text{case } e \text{ of } \{ C_1(x) \Rightarrow e_1; \ldots \}$$

 $$v ::= \cdots | C_1(v)$$

 $$\tau ::= \cdots | [C_1 : \tau_1, \ldots, C_n : \tau_n]$$

- Basic idea: allow a choice of n cases, each with a name
- To construct a named variant, use the constructor name on a value of the appropriate type, e.g. $C_i(e_i)$ where $e_i : \tau_i$
- The case construct generalizes to named variants also
Named variants in Scala: case classes

- We have already seen (and used) Scala’s case class mechanism

  ```scala
  abstract class IntList
  case class Nil() extends IntList
  case class Cons(head: Int, tail: IntList) extends IntList
  ```

- Note: IntList, Nil, Cons are newly defined types, different from any others.

- Case classes support pattern matching

  ```scala
def foo(x: IntList) = x match {
  case Nil() => ...
  case Cons(head,tail) => ...
}
  ```

Aside: Records and Variants in Haskell

- In Haskell, data defines a recursive, named variant type

  ```haskell
data IntList = Nil Int | Cons Int IntList
  ```

- and cases can define named fields:

  ```haskell
data Point = Point {x :: Double, y :: Double}
  ```

- In both cases the newly defined type is different from any other type seen so far, and the named constructor(s) can be used in pattern matching

- This approach dates to the ML programming language (Milner et al.) and earlier designs such as HOPE (Burstall et al.).

 (Both developed in Edinburgh)

Pattern matching

- Datatypes and case classes support pattern matching
 - We have seen a simple form of pattern matching for sum types.
 - This generalizes to named variants
 - But still is very limited: we only consider one “level” at a time

- Patterns typically also include constants and pairs/records

  ```scala
  x match { case (1, (true, "abcd")) => ... }
  ```

- Patterns in Scala, Haskell, ML can also be nested: that is, they can match more than one constructor

  ```scala
  x match { case Cons(1,Cons(y,Nil())) => ... }
  ```

More pattern matching

- Variables cannot be repeated, instead, explicit equality tests need to be used.

- The special pattern _ matches anything

- Patterns can overlap, and usually they are tried in order

  ```scala
  result match {
    case OK => println("All is well")
    case _ => println("Release the hounds!")
  }
  ```

 // not the same as

  ```scala
  result match {
    case _ => println("Release the hounds!")
    case OK => println("All is well")
  }
  ```
Expanding nested pattern matching

- Nested pattern matching can be expanded out:

```scala
1 match {
  case Cons(x,Cons(y,Nil()))) => ...
}
```

expands to

```scala
1 match {
  case Cons(x,t1) => t1 match {
    case Cons(y,t2) => t2 match {
      case Nil() => ...
    }
  }
}
```

Type abbreviations

- Obviously, it quickly becomes painful to write "\(\langle x : \text{int}, y : \text{str}\rangle\)" over and over.
- **Type abbreviations** introduce a name for a type.

  ```
  type \(T = \tau\)
  ```

 An abbreviation name \(T\) treated the same as its expansion \(\tau\)
 - (much like let-bound variables)

 Examples:
  ```
  type Point = \langle x: \text{dbl}, y: \text{dbl} \rangle
  type Point3d = \langle x: \text{dbl}, y: \text{dbl}, z: \text{dbl} \rangle
  type Color = \langle r: \text{int}, g: \text{int}, b: \text{int} \rangle
  type ColoredPoint = \langle x: \text{dbl}, y: \text{dbl}, c: \text{Color} \rangle
  ```

Type definitions

- Instead, can also consider **defining new (named) types**

  ```
  deftype \(T = \tau\)
  ```

- The term **generative** is sometimes used to refer to definitions that **create a new entity** rather than **introducing an abbreviation**

- Type abbreviations are usually not allowed to be recursive; type definitions can be.

  ```
  deftype \(\text{IntList} = \langle \text{Nil} : \text{unit}, \text{Cons} : \text{int} \times \text{IntList} \rangle\)
  ```

Type definitions vs. abbreviations in practice

- In Haskell, type abbreviations are introduced by **type**, while new types can be defined by data or newtype declarations.

- In Java, there is no explicit notation for type abbreviations; the only way to define a new type is to define a class or interface

- In Scala, type abbreviations are introduced by **type**, while the class, object and trait constructs define new types.
Subtyping

- Suppose we have a function:
 \[dist = \lambda p: \text{Point}. \sqrt{((p.x)^2 + (p.y)^2)} \]
 for computing the distance to the origin.
- Only the \(x \) and \(y \) fields are needed for this, so we’d like to
 be able to use this on \textit{ColoredPoints} also.
- But, this doesn’t typecheck:
 \[dist(\langle x=8.0, y=12.0, c=\text{purple} \rangle) = 13.0 \]
- We can introduce a \textit{subtyping} relationship between \textit{Point}
 and \textit{ColoredPoint} to allow for this.

Record subtyping: width and depth

- There are several different ways to define subtyping for records.
- \textbf{Width subtyping:} subtype has same fields as supertype
 (with identical types), and may have additional fields at the end:
 \[\langle l_1: \tau_1, \ldots, l_n: \tau_n, \ldots, l_{n+k}: \tau_{n+k} \rangle <:\langle l_1: \tau_1', \ldots, l_n: \tau_n' \rangle \]
- \textbf{Depth subtyping:} subtype’s fields are pointwise
 subtypes of supertype
 \[\tau_1 <:\tau_1' \ldots \tau_n <:\tau_n' \]
 \[\langle l_1: \tau_1, \ldots, l_n: \tau_n \rangle <:\langle l_1: \tau_1', \ldots, l_n: \tau_n' \rangle \]
- These rules can be combined. Optionally, field reordering
 can also be allowed (but is harder to implement).

Examples

- (We’ll abbreviate \(P = \text{Point} \), \(P3 = \text{Point3d} \), \(CP = \text{ColoredPoint} \) to save space...)
- So we have:
 \[P3d = \langle x: \text{dbl}, y: \text{dbl}, z: \text{dbl} \rangle <:\langle x: \text{dbl}, y: \text{dbl} \rangle = P \]
 \[CP = \langle x: \text{dbl}, y: \text{dbl}, c: \text{Color} \rangle <:\langle x: \text{dbl}, y: \text{dbl} \rangle = P \]
 but no other subtyping relationships hold
- So, we can call \textit{dist} on \textit{Point3d} or \textit{ColoredPoint}:
 \[x: P3d \vdash \text{dist}: P \rightarrow \text{dbl} \]
 \[x: P3d \vdash \text{dist}(x): \text{dbl} \]
Subtyping for pairs and variants

- For pairs, subtyping is componentwise:
 \[
 \frac{\tau_1 \times \tau_2 <: \tau'_1 \times \tau'_2}{\tau_1 <: \tau'_1 \quad \tau_2 <: \tau'_2}
 \]

- Similarly for binary variants:
 \[
 \frac{\tau_1 + \tau_2 <: \tau'_1 + \tau'_2}{\tau_1 <: \tau'_1 \quad \tau_2 <: \tau'_2}
 \]

- For named variants, can have additional subtyping rules (but this is rare).

Subtyping for functions

- When is \(A_1 \rightarrow B_1 <: A_2 \rightarrow B_2\)?
- Maybe componentwise, like pairs?
 \[
 \frac{\tau_1 <: \tau'_1 \quad \tau_2 <: \tau'_2}{\tau_1 \rightarrow \tau_2 <: \tau'_1 \rightarrow \tau'_2}
 \]

- But then we can do this (where \(\Gamma(p) = P\)):
 \[
 \begin{array}{c}
 \frac{\text{\(CP <: P \)} \quad \text{\(CP <: CP \)}}{\text{\(CP \rightarrow CP <: CP \)} \quad \text{\(CP <: P \rightarrow CP \)} \quad \text{\(P \rightarrow CP \)}}
 \end{array}
 \]

- So, once \(\text{ColoredPoint}\) is a subtype of \(\text{Point}\), we can change any \(\text{Point}\) to a \(\text{ColoredPoint}\) also. That doesn’t seem right.

Covariant vs. contravariant

- For the result type of a function (and for pairs and other data structures), the direction of subtyping is preserved:
 \[
 \frac{\tau_2 <: \tau'_2}{\tau_1 \rightarrow \tau_2 <: \tau'_1 \rightarrow \tau'_2}
 \]

- Subtyping of function results, pairs, etc., where order is preserved, is covariant.

- For the argument type of a function, the direction of subtyping is flipped:
 \[
 \frac{\tau'_1 <: \tau_1}{\tau_1 \rightarrow \tau_2 <: \tau'_1 \rightarrow \tau'_2}
 \]

- Subtyping of function arguments, where order is reversed, is called contravariant.

The “top” and “bottom” types

- any: a type that is a supertype of all types.
 - Such a type describes the common interface of all its subtypes (e.g. hashing, equality in Java)
 - In Scala, this is called Any

- empty: a type that is a subtype of all types.
 - Usually, such a type is considered to be empty: there cannot actually be any values of this type.
 - We’ve actually encountered this before, as the degenerate case of a choice type where there are zero choices
 - In Scala, this type is called Nothing. So for any Scala type \(\tau\) we have \(\text{Nothing} <: \tau <: \text{Any}\).
Notice that we combine the covariant and contravariant rules for functions into a single rule.

Summary: Subtyping rules

- $\tau_1 <: \tau_2$
- $\emptyset <: \tau$
- $\tau <: \text{any}$
- $\tau_1 <: \tau$
- $\tau_1 <: \tau_2 \quad \tau_2 <: \tau_3 \\ \tau_1 \times \tau_2 <: \tau'_1 \times \tau'_2 \\ \tau_1 + \tau_2 <: \tau_1 + \tau_2 \\ \tau_1' <: \tau_1 \\ \tau_2 <: \tau'_2 \\ \tau_1 \rightarrow \tau_2 <: \tau'_1 \rightarrow \tau'_2$

Structural vs. Nominal subtyping

- The approach to subtyping considered so far is called **structural**.
- The names we use for type abbreviations don’t matter, only their structure. For example, $\text{Point3d} <: \text{Point}$ because Point3d has all of the fields of Point (and more).
- Then $\text{dist}(p)$ also runs on $p : \text{Point3d}$ (and gives a nonsense answer!)
- So far, a defined type has no subtypes (other than itself).
- By default, definitions ColoredPoint, Point and Point3d are unrelated.

Structural vs. Nominal subtyping

- If we defined new types Point' and Point3d', rather than treating them as abbreviations, then we have more control over subtyping
- Then we can declare ColoredPoint' to be a subtype of Point'

  ```
  deftype $\text{Point'} = \langle x: \text{dbl}, y: \text{dbl} \rangle$
  deftype $\text{ColoredPoint'} <: \text{Point'} = \langle x: \text{dbl}, y: \text{dbl}, c: \text{Color} \rangle$
  ```
- However, we could choose not to assert Point3d' to be a subtype of Point', preventing (mis)use of subtyping to view Point3d’s as Point’s.
- This **nominal** subtyping is used in Java and Scala
 - A defined type can only be a subtype of another if it is declared as such
 - More on this later!

Summary

- Today we covered:
 - Records, variants, and pattern matching
 - Type abbreviations and definitions
 - Subtyping
- Next time:
 - Polymorphism and type inference