Overview

So far, we’ve covered

- arithmetic
- booleans, conditionals (if then else)
- variables and simple binding (let)

L

Let allows us to compute values of expressions
and use variables to store intermediate values
but not to define computations on unknown values.
That is, there is no feature analogous to Haskell’s
functions, Scala’s def, or methods in Java.

Today, we consider functions and recursion

Named functions

A simple way to add support for functions is as follows:

\[e ::= \cdots \mid f(e) \mid \text{let fun } f(x : \tau) = e_1 \text{ in } e_2 \]

Meaning: Define a function called \(f \) that takes an argument \(x \) and whose result is the expression \(e_1 \).

- Make \(f \) available for use in \(e_2 \).
- (That is, the scope of \(x \) is \(e_1 \), and the scope of \(f \) is \(e_2 \).)
- This is pretty limited:
 - for now, we consider one-argument functions only.
 - no recursion
 - functions are not first-class “values” (e.g. can’t pass a function as an argument to another)

Examples

We can define a squaring function:

\[
\text{let fun square}(x \colon \text{int}) = x \times x \text{ in } \cdots
\]

or (assuming inequality tests) absolute value:

\[
\text{let fun abs}(x \colon \text{int}) = \text{if } x < 0 \text{ then } -x \text{ else } x \text{ in } \cdots
\]
Types for named functions

- We introduce a type constructor \(\tau_1 \rightarrow \tau_2 \), meaning “the type of functions taking arguments in \(\tau_1 \) and returning \(\tau_2 \).”
- We can typecheck named functions as follows:

 \[
 \Gamma \vdash f : \tau_1 \rightarrow \tau_2 \vdash e : \tau_1 \\
 \Gamma \vdash e[f] : \tau_2
 \]

- For convenience, we just use a single environment \(\Gamma \) for both variables and function names.

Examples

Typechecking of abs(−42)

\[
\begin{align*}
\Gamma(x) &= \text{int} \\
\Gamma \vdash x : \text{int} &\quad \Gamma \vdash 0 : \text{int} \\
\Gamma \vdash x < 0 : \text{bool} &\quad \Gamma \vdash -x : \text{int} \\
\Gamma \vdash -x : \text{int} &\quad \Gamma \vdash x : \text{int} \\
\Gamma \vdash \text{if } x < 0 \text{ then } -x \text{ else } x &\quad \text{: } \text{int} \\
\Gamma \vdash \text{abs} : \text{int} \rightarrow \text{int} &\quad \Gamma \vdash -42 : \text{int} \\
\Gamma \vdash \text{abs}(-42) &\quad \text{: } \text{int} \\
\Gamma \vdash \text{let fun } \text{abs}(x : \text{int}) = e_{abs} \text{ in abs}(-42) &\quad \text{where } e_{abs} = \text{if } x < 0 \text{ then } -x \text{ else } x \\
\Gamma = x : \text{int}.
\end{align*}
\]

Semantics of named functions

- We can define rules for evaluating named functions as follows.
- First, let \(\delta \) be an environment mapping function names \(f \) to their “definitions”, which we’ll write as \(\langle x \mapsto e \rangle \).
- When we encounter a function definition, add it to \(\delta \).
 \[
 \delta[f \mapsto \langle x \mapsto e_1 \rangle], e_2 \Downarrow \nu \quad \delta, \text{let fun } f(x : \tau) = e_1 \text{ in } e_2 \Downarrow \nu
 \]
- When we encounter an application, look up the definition and evaluate the body with the argument value substituted for the argument:
 \[
 \delta, e_0 \Downarrow \nu_0 \quad \delta(f) = \langle x \mapsto e \rangle \quad \delta, e[v_0/x] \Downarrow \nu \\
 \delta, f(e_0) \Downarrow \nu
 \]

Examples

Evaluation of abs(−42)

\[
\begin{align*}
\delta, -42 < 0 \Downarrow \text{true} \quad \delta, -(-42) \Downarrow 42 \\
\delta, \text{if } -42 < 0 \text{ then } -(-42) \text{ else } -42 \Downarrow 42 \\
\delta, -42 \Downarrow -42 \\
\delta, \text{abs}(-42) \Downarrow 42 \\
\delta, \text{abs}(-42) \Downarrow 42 \\
\delta, \text{let fun abs}(x : \text{int}) = e_{abs} \text{ in abs}(-42) \Downarrow 42 \\
\delta, \text{abs}(-42) \Downarrow 42 \\
\end{align*}
\]

where \(e_{abs} = \text{if } x < 0 \text{ then } -x \text{ else } x \) and
\[
\delta = \langle \text{abs} \mapsto \langle x \mapsto e_{abs} \rangle \rangle
\]
Named functions
Anonymous functions
Recursion
Named functions
Anonymous functions
Recursion

Static vs. dynamic scope

- Function bodies can contain free variables. Consider:

  ```
  let x = 1 in
  let fun f(y : int) = x + y in
  let x = 10 in f(3)
  ```

 Here, x is bound to 1 at the time f is defined, but re-bound to 10 when by the time f is called.
- There are two reasonable-seeming result values, depending on which x is in scope:
 - Static scope uses the binding x = 1 present when f is defined, so we get 1 + 3 = 4.
 - Dynamic scope uses the binding x = 10 present when f is used, so we get 10 + 3 = 13.

Anonymous, first-class functions

- In many languages (including Java as of version 8), we can also write an expression for a function without a name:

  ```
  \( \lambda x : \tau. \ e \)
  ```

 Here, \(\lambda \) (Greek letter lambda) introduces an anonymous function expression in which x is bound in e.
 - (The \(\lambda \)-notation dates to Church’s higher-order logic (1940); there are several competing stories about why he chose \(\lambda \).)
- In Scala one writes: \((x : \text{Type}) \rightarrow e \)
- In Java 8: \(x \rightarrow e \) (no type needed)
- In Haskell: \(\backslash x \rightarrow e \) or \(\backslash x :: \text{Type} \rightarrow e \)
- The lambda-calculus is a model of anonymous functions

Dynamic scope breaks type soundness

- Even worse, what if we do this:

  ```
  let x = 1 in
  let fun f(y : int) = x + y in
  let x = true in f(3)
  ```

 When we typecheck f, x is an integer, but it is re-bound to a boolean by the time f is called.
- The program as a whole typechecks, but we get a run-time error: dynamic scope makes the type system unsound!
- Early versions of LISP used dynamic scope, and it is arguably useful in an untyped language.
- Dynamic scope is now generally acknowledged as a mistake — but one that naive language designers still make.

Types for the \(\lambda \)-calculus

- We define \(L_{\text{Lam}} \) to be \(L_{\text{Let}} \) extended with typed \(\lambda \)-abstraction and application as follows:

  ```
  e ::= \( \cdots \mid e_1 \; e_2 \mid \lambda x : \tau. \; e \)
  
  \( \tau ::= \cdots \mid \tau_1 \rightarrow \tau_2 \)
  ```

 - \(\tau_1 \rightarrow \tau_2 \) is (again) the type of functions from \(\tau_1 \) to \(\tau_2 \).
 - We can extend the typing rules as follows:

 \[
 \frac{
 \Gamma \vdash e : \tau \quad \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1
 }{
 \Gamma \vdash e_1 \; e_2 : \tau_2
 }
 \]
Evaluation for the λ-calculus

- Values are extended to include λ-abstractions $\lambda x. e$:

$$v ::= \cdots | \lambda x. e$$

(Note: We elide the type annotations when not needed.)

- and the evaluation rules are extended as follows:

<table>
<thead>
<tr>
<th>$e \Downarrow v$ for LLam</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda x. e \Downarrow \lambda x. e$</td>
</tr>
<tr>
<td>$e_1 e_2 \Downarrow v$</td>
</tr>
</tbody>
</table>

Note: Combined with let, this subsumes named functions! We can just define let fun as “syntactic sugar”

let fun $f(x:\tau) = e_1$ in $e_2 \iff$ let $f = \lambda x:\tau. e_1$ in e_2

Examples

- In LLam, we can define a higher-order function that calls its argument twice:

$$\text{let fun } \text{twice}(f:\tau \rightarrow \tau) = \lambda x. f(f(x)) \text{ in } \cdots$$

- and we can define the composition of two functions:

$$\text{let compose} = \lambda f:\tau_2 \rightarrow \tau_3. \lambda g:\tau_1 \rightarrow \tau_2. \lambda x:\tau_1. f(g(x)) \text{ in } \cdots$$

- Notice we are using repeated λ-abstractions to handle multiple arguments

Recursive functions

- However, LLam still cannot express general recursion, e.g. the factorial function:

$$\text{let fun } \text{fact}(n:\text{int}) =$$

$$\quad \text{if } n == 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1) \text{ in } \cdots$$

is not allowed because fact is not in scope inside the function body.

- We can’t write it directly as a λ-expression $\lambda x:\tau. e$ either because we don’t have a “name” for the function we’re trying to define inside e.

Named recursive functions

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)

- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F#)

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)

- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F#)

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)

- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, F#)

- Note: In the untyped λ-calculus, let rec is definable using a special λ-term called the Y combinator
Anonymous recursive functions

- Inspired by L\text{Lam}, we introduce a notation for anonymous recursive functions:

\[
e ::= \cdots | \text{rec } f(x : \tau_1) : \tau_2. \ e
\]

- Idea: \(f \) is a local name for the function being defined, and is in scope in \(e \), along with the argument \(x \).
- We define \(\text{LRec} \) to be \(\text{LLam} \) extended with \(\text{rec} \).
- We can then define \(\text{let rec} \) as syntactic sugar:

\[
\text{let rec } f(x : \tau_1) : \tau_2 = e_1 \text{ in } e_2 \\
\iff \text{let } f = \text{rec } f(x : \tau_1) : \tau_2. \ e_1 \text{ in } e_2
\]

- Note: The outer \(f \) is in scope in \(e_2 \), while the inner one is in scope in \(e_1 \). The two \(f \) bindings are unrelated.

Anonymous recursive functions: typing

- The types of \(\text{LRec} \) are the same. We just add one rule:

\[
\Gamma \vdash e : \tau \\
\Gamma, f : \tau_1 \to \tau_2, x : \tau_1 \vdash e : \tau_2 \\
\Gamma \vdash \text{rec } f(x : \tau_1) : \tau_2. \ e : \tau_1 \to \tau_2
\]

- This says: to typecheck a recursive function,
 - bind \(f \) to the type \(\tau_1 \to \tau_2 \) (so that we can call it as a function in \(e \)),
 - bind \(x \) to the type \(\tau_1 \) (so that we can use it as an argument in \(e \)),
 - typecheck \(e \).
- Since we use the same function type, the existing function application rule is unchanged.

Anonymous recursive functions: semantics

- Like a \(\lambda \)-term, a recursive function is a value:

\[
v ::= \cdots | \text{rec } f(x). \ e
\]

- We can evaluate recursive functions as follows:

\[
\begin{align*}
\text{rec } f(x). \ e \Downarrow \text{rec } f(x). \ e \\
e_1 \Downarrow \text{rec } f(x). \ e & \quad e_2 \Downarrow v_2 \quad e[\text{rec } f(x). \ e/f, v_2/x] \Downarrow v \\
e_1 \ e_2 \Downarrow v
\end{align*}
\]

- To apply a recursive function, we substitute the argument for \(x \) and the whole \(\text{rec} \) expression for \(f \).

Examples

- We can now write, typecheck and run \text{fact}
 - (you will implement an evaluator for \(\text{LRec} \) in Assignment 2 that can do this)
- In fact, \(\text{LRec} \) is Turing-complete (though it is still so limited that it is not very useful as a general-purpose language)
- (Turing complete means: able to simulate any Turing machine, that is, any computable function / any other programming language. ITCS covers Turing completeness and computability in depth.)
Mutual recursion

- What if we want to define mutually recursive functions?
 - A simple example:
    ```scala
    def even(n: Int) = if n == 0 then true else odd(n-1)
    def odd(n: Int) = if n == 0 then false else even(n-1)
    ```
 - Perhaps surprisingly, we can’t easily do this!
 - One solution: generalize `let rec`:
    ```scala
    let rec f_1(x_1: τ_1): τ'_1 = e_1 and ⋯ and f_n(x_n: τ_n): τ'_n = e_n
    in e
    ```
 - This gets messy fast; we’ll revisit this issue later.

Summary

- Today we have covered:
 - Named functions
 - Static vs. dynamic scope
 - Anonymous functions
 - Recursive functions
 - along with our first “composite” type, the function type
 \(\tau_1 \to \tau_2 \).
 - Next time
 - Data structures: Pairs (combination) and variants (choice)