Overview

For the remaining lectures we consider some cross-cutting considerations for programming language design.

Last time: Imperative programming

Today:
- Finer-grained (small-step) evaluation
- Type safety

Refresher

In the first 6 lectures we covered:
- Basic arithmetic (L_{Arith})
- Conditionals and booleans (L_{If})
- Variables and let-binding (L_{Let})
- Functions and recursion (L_{Rec})
- Data structures (L_{Data})

formalized using big-step evaluation ($e \downarrow v$) and type judgments ($\Gamma \vdash e : \tau$)

and implemented using Scala interpreters (CW1)

Limitations of big-step semantics

- Big-step semantics is convenient, but also limited
- It says how to evaluate the “whole program” (expression) to its “final value”
- But what if there is no final value?
 - Expressions like $1 + \text{true}$ simply don’t evaluate
 - Nonterminating programs don’t evaluate either, but for a different reason!
- As we will see in later lectures, it is also difficult to deal with other features, like exceptions, using big-step semantics
We will now consider an alternative: small-step semantics

\[e \mapsto e' \]

which says how to evaluate an expression "one step at a time"

If \(e_0 \mapsto \cdots \mapsto e_n \) then we write \(e_0 \mapsto^* e_n \). (in particular, for \(n = 0 \) we have \(e_0 \mapsto^* e_0 \))

We want it to be the case that \(e \mapsto^* v \) if and only if \(e \Downarrow v \).

But \(\mapsto^* \) provides more detail about how this happens.

It also allows expressions to "go wrong" (get stuck before reaching a value)

\[e \mapsto^* e' \] for \(L_{\text{Arith}} \)

\[\begin{align*}
 e_1 \oplus e_2 & \mapsto^* e'_1 \oplus e'_2 \\
 v_1 \oplus v_2 & \mapsto v_1 \oplus_N v_2 \\
 v_1 \times v_2 & \mapsto v_1 \times_N v_2
\end{align*} \]

- If the first subexpression of \(\oplus \) can take a step, apply it
- If the first subexpression is a value and the second can take a step, apply it
- If both sides are values, perform the operation

Example:

\[1 + (2 \times 3) \mapsto 1 + 6 \mapsto 7 \]

\[e \mapsto e' \] for \(L_{\text{Let}} \)

\[\begin{align*}
 e_1 \mapsto e'_1 \\
 \text{let } x = e_1 \text{ in } e_2 \mapsto \text{let } x = e'_1 \text{ in } e_2 \\
 \text{let } x = v_1 \text{ in } e_2 \mapsto e_2[v_1/x]
\end{align*} \]

- If the expression \(e_1 \) is not yet a value, evaluate it one step
- Otherwise, substitute it and proceed

Example:

\[\begin{align*}
 \text{let } x = 1 + 1 \text{ in } x \times x & \mapsto \text{let } x = 2 \text{ in } x \times x \\
 & \mapsto 2 \times 2 \\
 & \mapsto 4
\end{align*} \]
Small-step semantics: \(L_{\text{Lam}} \)

\[e \mapsto e' \] for \(L_{\text{Lam}} \)

\[
\begin{array}{c}
\frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \\
\frac{e_2 \mapsto e_2'}{v_1 e_2 \mapsto v_1 e_2'} \\
(\lambda x. e) \mapsto e[v/x]
\end{array}
\]

- If the function part is not a value, evaluate it one step
- If the function is a value and the argument isn’t, evaluate it one step
- If both function and argument are values, substitute and proceed

\[((\lambda x. \lambda y. x + y) \; 1) \; 2 \mapsto ((\lambda y. 1 + y) \; 2 \mapsto 1 + 2 \mapsto 3 \]

Judgments and Rules, in general

- A judgment is a relation among one or more abstract syntax trees.
- Examples so far: \(e \downarrow v, \Gamma \vdash e : \tau, e \mapsto e' \)
- We have been defining judgments using rules of the form:

\[
\frac{P_1 \ldots P_n}{Q}
\]

where \(P_1, \ldots, P_n \) and \(Q \) are judgments.

Meaning of Rules

- A rule of the form:

\[
\frac{Q}{Q}
\]

is called an axiom. It says that \(Q \) is always derivable.

- A rule of the form

\[
\frac{P_1 \ldots P_n}{Q}
\]

says that judgment \(Q \) is derivable if \(P_1, \ldots, P_n \) are derivable.

- Symbols like \(e, v, \tau \) in rules stand for arbitrary expressions, values, or types.
- (If you have taken Logic Programming: These rules are a lot like Prolog clauses!)

Small-step semantics: \(L_{\text{Rec}} \)

\[e \mapsto e' \] for \(L_{\text{Rec}} \)

\[
(\text{rec } f(x). e) \mapsto e[\text{rec } f(x). e/f, v/x]
\]

- Same rules for evaluation inside application
- Note that we need to substitute \(\text{rec } f(x). e \) for \(f \).
- Suppose \(\text{fact} \) is the factorial function:

\[
\begin{align*}
\text{fact } 2 & \mapsto \text{if } 2 == 0 \text{ then } 1 \text{ else } 2 \times \text{fact}(2-1) \\
& \mapsto \text{if } \text{false} \text{ then } 1 \text{ else } 2 \times \text{fact}(2-1) \\
& \mapsto 2 \times \text{fact}(2-1) \\
& \mapsto 2 \times (\text{if } 1 == 0 \text{ then } 1 \text{ else } 1 \times \text{fact}(1-1)) \\
& \mapsto 2 \times (\text{false} \text{ then } 1 \text{ else } 1 \times \text{fact}(1-1)) \\
& \mapsto 2 \times (1 \times \text{fact}(1-1)) \\
& \mapsto 2 \times (\text{false} \text{ then } 1 \text{ else } 1 \times \text{fact}(0)) \\
& \mapsto \ast \; 2 \times (1 \times \text{fact}(0)) \\
& \mapsto \ast \; 2 \times (1 \times 1) \\
& \mapsto 2 \times 1 \\
& \mapsto 2
\end{align*}
\]
Rule induction

Induction on derivations of \(e \downarrow v \)

Suppose \(P(-, -) \) is a predicate over pairs of expressions and values. If:

- \(P(v, v) \) holds for all values \(v \)
- If \(P(e_1, v_1) \) and \(P(e_2, v_2) \) then \(P(e_1 + e_2, v_1 + N v_2) \)
- If \(P(e_1, v_1) \) and \(P(e_2, v_2) \) then \(P(e_1 \times e_2, v_1 \times N v_2) \)

then \(e \downarrow v \) implies \(P(e, v) \).

- Rule induction can be derived from mathematical induction on the size (or height) of the derivation tree.
- (Much like structural induction.)
- We won’t formally prove this.

Type soundness

- The central property of a type system is **soundness**.
- Roughly speaking, soundness means “well-typed programs don’t go wrong” [Milner].
- But what exactly does “go wrong” mean?
 - For large-step: hard to say
 - For small-step: “go wrong” means “stuck” expression \(e \) that is not a value and cannot take a step.
- We could show something like:

 Theorem (Soundness)

 \[
 \text{If } \vdash e : \tau \text{ and } e \mapsto v \text{ then } \vdash v : \tau.
 \]

- This says that if an expression evaluates to a value, then the value has the right type.

Example: \(e \downarrow v \) implies \(e \mapsto v \)

- As an example, we’ll show a few cases of the forward direction of:

 Theorem (Equivalence of big-step and small-step evaluation)

 \(e \downarrow v \text{ if and only if } e \mapsto v \).

Base case.

If the derivation is of the form

\[
\begin{align*}
 n \downarrow n
\end{align*}
\]

for some number \(n \), then \(e = n \) is already a value \(v = n \), so no steps are needed to evaluate it, i.e. \(n \mapsto v \) in zero steps.

Inductive case.

If the derivation is of the form

\[
\begin{align*}
 e_1 \downarrow v_1 & \quad e_2 \downarrow v_2 \\
 e_1 + e_2 \downarrow v_1 + N v_2
\end{align*}
\]

then by induction, we know \(e_1 \mapsto v_1 \) and \(e_2 \mapsto v_2 \). Using the small-step rules, we can then show

\[
\begin{align*}
 e_1 + e_2 \mapsto v_1 + v_2 \mapsto v_1 + N v_2
\end{align*}
\]

- The case for \(\times \) is similar.
Type soundness revisited

- We can decompose soundness into two parts:

Lemma (Progress)

\[\text{If } \vdash e : \tau \then \text{either } e \text{ is a value or for some } e' \text{ we have } e \mapsto e'. \]

Lemma (Preservation)

\[\text{If } \vdash e : \tau \text{ and } e \mapsto e' \then \vdash e' : \tau. \]

- Combining these two, can show:

Theorem (Soundness)

\[\text{If } \vdash e : \tau \text{ and } e \mapsto^* v \then \vdash v : \tau. \]

- We will sketch these properties for L_{if} (leaving out a lot of formal detail)

Progress for L_{if}

Progress is proved by induction on \(\vdash e : \tau \) derivations. We show some representative cases.

Progress for +.

\[\begin{array}{c}
\vdash e_1 : \text{int} \\
\vdash e_2 : \text{int}
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\vdash e_1 + e_2 : \text{int}
\end{array} \]

If the derivation is of the above form, then by induction \(e_1 \) is either a value or can take a step, and likewise for \(e_2 \). There are three cases.

- If \(e_1 \mapsto e'_1 \) then \(e_1 + e_2 \mapsto e'_1 + e_2 \).
- If \(e_1 \) is a value \(v_1 \) and \(e_2 \mapsto e'_2 \), then \(v_1 + e_2 \mapsto v_1 + e'_2 \).
- If both \(e_1 \) and \(e_2 \) are values then they must both be numbers \(n_1, n_2 \in \mathbb{N} \), so \(e_1 + e_2 \mapsto n_1 + n_2 \).

Preservation for L_{if}

Preservation is proved by induction on the structure of \(\vdash e : \tau \). We'll consider some representative cases:

Preservation for +.

\[\begin{array}{c}
\vdash e_1 : \text{int} \\
\vdash e_2 : \text{int}
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\vdash e_1 + e_2 : \text{int}
\end{array} \]

If the derivation is of the above form, there are three cases.

- If \(e_1 = v_1 \) and \(v_1 + v_2 \mapsto v_1 + v_2 \) then obviously \(\vdash v_1 + v_2 : \text{int} \).
- If \(e_1 + e_2 \mapsto e'_1 + e_2 \) where \(e_1 \mapsto e'_1 \), then since \(\vdash e_1 : \text{int} \), we have \(\vdash e'_1 : \text{int} \), so \(\vdash e'_1 + e_2 : \text{int} \) also.
- The case where \(e_1 = v_1 \) and \(v_1 + e_2 \mapsto v_1 + e'_2 \) is similar.
Preservation for \(L_{If} \)

If the derivation is of the form
\[
\Gamma \vdash e : \text{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau \\
\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau
\]

then there are three cases:

- If \(\text{if } e \text{ then } e_1 \text{ else } e_2 \mapsto \text{if } e' \text{ then } e_1 \text{ else } e_2 \) where \(e \mapsto e' \), then by induction we can show that \(\Gamma \vdash e' : \text{bool} \) and \(\Gamma \vdash \text{if } e' \text{ then } e_1 \text{ else } e_2 : \tau \).

- If \(e = \text{true} \) then if \(\text{true} \) then \(e_1 \) else \(e_2 \mapsto e_1 \), so we already know \(\Gamma \vdash e_1 : \tau \).

- The case for if \(e = \text{false} \) then if \(e_1 \) else \(e_2 \mapsto e_2 \) is similar.

Type soundness for \(L_{Rec} \)

Progress: If an application term is well-formed:
\[
\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1 \\
\Gamma \vdash e_1 \ e_2 : \tau_2
\]

then by induction, \(e_1 \) is either a value or \(e_1 \mapsto e'_1 \) for some \(e'_1 \). If it is a value, it must be either a lambda-expression or a recursive function, so \(e_1 \ e_2 \) can take a step. Otherwise, \(e_1 \ e_2 \mapsto e'_1 \ e_2 \).

Preservation: Similar to \(\text{let} \), using substitution lemma for the cases
\[
(\lambda x. \ e) \ v \mapsto e[v/x] \\
(\text{rec } f(x). \ e) \ v \mapsto e[\text{rec } f(x). \ e/f, v/x]
\]

Summary

- Today we have presented
 - Small-step evaluation: a finer-grained semantics
 - Induction on derivations
 - Type soundness (details for \(L_{If} \))
 - Sketch of type soundness for \(L_{Rec} \) [Non-examinable]

- Deep breath: No more proofs from now on.
- Remaining lectures cover cross-cutting language features, which often have subtle interactions with each other

- Next time: Guest lecture by Michel Steuwer on **DSLs and rewrite-based optimizations for performance-portable parallel programming**