
Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Elements of Programming Languages
Lecture 1: Abstract syntax

James Cheney

University of Edinburgh

September 23, 2016

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Today

We will introduce some basic tools used throughout the
course:

Concrete vs. abstract syntax

Abstract syntax trees

Induction over expressions

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

LArith

We will start out with a very simple (almost trivial)
“programming language” called LArith to illustrate these
concepts

Namely, expressions with integers, + and ⇥
Examples:

1 + 2 ---> 3

1 + 2 * 3 ---> 7

(1 + 2) * 3 ---> 9

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Concrete vs. abstract syntax

Concrete syntax: the actual syntax of a programming
language

Specify using context-free grammars (or generalizations)
Used in compiler/interpreter front-end, to decide how to
interpret strings as programs

Abstract syntax: the “essential” constructs of a
programming language

Specify using so-called Backus Naur Form (BNF)
grammars
Used in specifications and implementations to describe
the abstract syntax trees of a language.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

CFG vs. BNF

Context-free grammar giving concrete syntax for
expressions

E ! E PLUS F | F

F ! F TIMES F | NUM | LPAREN E RPAREN

Needs to handle precedence, parentheses, etc.

Tokenization (+ ! PLUS, etc.), comments, whitespace
usually handled by a separate stage

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

BNF grammars

BNF grammar giving abstract syntax for expressions

Expr 3 e ::= e1 + e2 | e1 ⇥ e2 | n 2 N

This says: there are three kinds of expressions

Additions e1 + e2, where two expressions are combined
with the + operator
Multiplications e1 ⇥ e2, where two expressions are
combined with the ⇥ operator
Numbers n 2 N

Much like CFG rules, we can ”derive” more complex
expressions:

e ! e1 + e2 ! 3 + e2 ! 3 + (e3 ⇥ e4) ! · · ·

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

BNF conventions

We will usually use BNF-style rules to define abstract
syntax trees

and assume that concrete syntax issues such as
precedence, parentheses, whitespace, etc. are handled
elsewhere.

Convention: the subscripts on occurrences of e on the
RHS don’t a↵ect the meaning, just for readability

Convention: we will freely use parentheses in abstract
syntax notation to disambiguate

e.g.
(1 + 2) ⇥ 3 vs. 1 + (2 ⇥ 3)

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract
syntax trees, for example:

+

1 2

+

1 ⇥

2 3

⇥

+

1 2

3

These can be represented in a program as trees, or in other
ways (which we will cover in due course)

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Languages for examples

We will use several languages for examples throughout
the course:

Java: typed, object-oriented
Python: untyped, object-oriented with some functional
features
Haskell: typed, functional
Scala: typed, combines functional and OO features
Sometimes others, to discuss specific features

You do not need to already know all these languages!

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Java

In Java ASTs can be defined using a class hierarchy:

abstract class Expr {}

class Num extends Expr {

public int n;

Num(int _n) {

n = _n;

}

}

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Java

In Java ASTs can be defined using a class hierarchy:

...

class Plus extends Expr {

public Expr e1;

public Expr e2;

Plus(Expr _e1, Expr _e2) {

e1 = _e1;

e2 = _e2;

}

}

class Times extends Expr {... // similar

}

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Java

Traverse ASTs by adding a method to each class:

abstract class Expr {

abstract public int size();

}

class Num extends Expr { ...

public int size() { return 1;}

}

class Plus extends Expr { ...

public int size() {

return e1.size(e1) + e2.size() + 1;

}

}

class Times extends Expr {... // similar

}

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Python

Python is similar, but shorter (no types):

class Expr:

pass # "abstract"

class Num(Expr):

def __init__(self,n):

self.n = n

def size(self): return 1

class Plus(Expr):

def __init__(self,e1,e2):

self.e1 = e1

self.e2 = e2

def size(self):

return self.e1.size() + self.e2.size() + 1

class Times(Expr): # similar...

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Haskell

In Haskell, ASTs are easily defined as datatypes:

data Expr = Num Integer

| Plus Expr Expr

| Times Expr Expr

Likewise one can easily write functions to traverse them:

size :: Expr -> Integer

size (Num n) = 1

size (Plus e1 e2) =

(size e1) + (size e2) + 1

size (Times e1 e2) =

(size e1) + (size e2) + 1

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Scala

In Scala, can define ASTs conveniently using case classes:
abstract class Expr

case class Num(n: Integer) extends Expr

case class Plus(e1: Expr, e2: Expr) extends Expr

case class Times(e1: Expr, e2: Expr) extends Expr

Again one can easily write functions to traverse them
using pattern matching:
def size (e: Expr): Int = e match {

case Num(n) => 1

case Plus(e1,e2) =>

size(e1) + size(e2) + 1

case Times(e1,e2) =>

size(e1) + size(e2) + 1

}

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Creating ASTs

Java:

new Plus(new Num(2), new Num(2))

Python:

Plus(Num(2),Num(2))

Haskell:

Plus(Num(2),Num(2))

Scala: (the “new” is optional for case classes:)

new Plus(new Num(2),new Num(2))

Plus(Num(2),Num(2))

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Precedence, Parentheses and Parsimony

Infix notation and operator precedence rules are
convenient for programmers (looks like familiar math) but
complicate language front-end

Some languages, notably LISP/Scheme/Racket, eschew
infix notation.

All programs are essentially so-called S-Expressions:

s ::= a | (a s1 · · · sn)

so their concrete syntax is very close to abstract syntax.

For example

1 + 2 ---> (+ 1 2)

1 + 2 * 3 ---> (+ 1 (* 2 3))

(1 + 2) * 3 ---> (* (+ 1 2) 3)

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

The three most important reasoning techniques

The three most important reasoning techniques for
programming languages are:

(Mathematical) induction

(over N)

(Structural) induction

(over ASTs)

(Rule) induction

(over derivations)

We will briefly review the first and present structural
induction.

We will cover rule induction later.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Induction

Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

P(0) holds

for any n 2 N, if P(n) holds then P(n + 1) also holds

Then P(n) holds for all n 2 N.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Induction over expressions

A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

P(n) holds for every number n 2 N

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 ⇥ e2) also holds

Then P(e) holds for all expressions e.

Note that we are performing induction over abstract
syntax trees, not numbers!

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Proof of expression induction principle

Define the size of an expression in the obvious way:

size(n) = 1

size(e1 + e2) = size(e1) + size(e2) + 1

size(e1 ⇥ e2) = size(e1) + size(e2) + 1

Given P(�) satisfying the assumptions of expression induction,
we prove the property

Q(n) = for all e with size(e) < n we have P(e)

Since any expression e has a finite size, P(e) holds for any
expression.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Proof of expression induction principle

Proof.

We prove that Q(n) holds for all n by induction on n:

The base case n = 0 is vacuous

For n + 1, then assume Q(n) holds and consider any e
with size(e) < n + 1. Then there are three cases:

if e = m 2 N then P(e) holds by part 1 of expression
induction principle
if e = e1 + e2 then size(e1) < size(e) n and similarly
for size(e2) < size(e) n. So, by induction, P(e1) and
P(e2) hold, and by part 2 of expression induction
principle P(e) holds.
if e = e1 ⇥ e2, the same reasoning applies.

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Summary

We covered:

Concrete vs. Abstract syntax
Abstract syntax trees
Abstract syntax of LArith in several languages
Structural induction over syntax trees

This might seem like a lot to absorb, but don’t worry! We
will revisit and reinforce these concepts throughout the
course.

Next time:

Evaluation
A simple interpreter
Operational semantics rules

