Today

We will introduce some basic tools used throughout the course:
- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

L_{Arith}

We will start out with a very simple (almost trivial) “programming language” called L_{Arith} to illustrate these concepts.

Namely, expressions with integers, $+$ and \times.

Examples:
- $1 + 2 \quad \longrightarrow \quad 3$
- $1 + 2 \times 3 \quad \longrightarrow \quad 7$
- $(1 + 2) \times 3 \quad \longrightarrow \quad 9$

- **Concrete syntax**: the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret strings as programs

- **Abstract syntax**: the “essential” constructs of a programming language
 - Specify using so-called Backus Naur Form (BNF) grammars
 - Used in specifications and implementations to describe the abstract syntax trees of a language.
Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

CFG vs. BNF

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract syntax trees, for example:

\[\begin{array}{c}
\text{+} \\
\text{1} \\
\text{×} \\
\text{2} \\
\text{+} \\
\text{3} \\
\text{1} \\
\text{2} \\
\end{array} \]

These can be represented in a program as trees, or in other ways (which we will cover in due course)

1. Context-free grammar giving concrete syntax for expressions

\[
E \rightarrow E \text{ PLUS } F \mid F \\
F \rightarrow F \text{ TIMES } F \mid \text{NUM} \mid \text{LPAREN } E \text{ RPAREN}
\]

2. Needs to handle precedence, parentheses, etc.

3. Tokenization (+ → PLUS, etc.), comments, whitespace usually handled by a separate stage

BNF conventions

1. We will usually use BNF-style rules to define abstract syntax trees
2. and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
3. Convention: the subscripts on occurrences of e on the RHS don’t affect the meaning, just for readability
4. Convention: we will freely use parentheses in abstract syntax notation to disambiguate
5. e.g.

\[(1 + 2) \times 3 \quad \text{vs.} \quad 1 + (2 \times 3)\]

BNF grammars

1. BNF grammar giving abstract syntax for expressions

\[
\text{Expr} \ni e \quad ::= \quad e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}
\]

2. This says: there are three kinds of expressions

 - Additions $e_1 + e_2$, where two expressions are combined with the + operator
 - Multiplications $e_1 \times e_2$, where two expressions are combined with the × operator
 - Numbers $n \in \mathbb{N}$

3. Much like CFG rules, we can “derive” more complex expressions:

\[e \rightarrow e_1 + e_2 \rightarrow 3 + e_2 \rightarrow 3 + (e_3 \times e_4) \rightarrow \cdots\]
Languages for examples

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
 - Sometimes others, to discuss specific features
- You do not need to already know all these languages!

ASTs in Java

- In Java ASTs can be defined using a class hierarchy:

```java
abstract class Expr {
    abstract public int size();
}
class Num extends Expr {
    public int n;
    Num(int _n) {
        n = _n;
    }
}
class Plus extends Expr {
    public Expr e1;
    public Expr e2;
    Plus(Expr _e1, Expr _e2) {
        e1 = _e1;
        e2 = _e2;
    }
}
class Times extends Expr {... // similar
}
```

- Traverse ASTs by adding a method to each class:

```java
... // similar
```
Python is similar, but shorter (no types):

```python
class Expr:
    pass  # "abstract"

class Num(Expr):
    def __init__(self, n):
        self.n = n
    def size(self): return 1

class Plus(Expr):
    def __init__(self, e1, e2):
        self.e1 = e1
        self.e2 = e2
    def size(self):
        return self.e1.size() + self.e2.size() + 1

class Times(Expr):  # similar...
    def __init__(self, e1, e2):
        self.e1 = e1
        self.e2 = e2
    def size(self):
        return self.e1.size() + self.e2.size() + 1
```

In Haskell, ASTs are easily defined as `datatypes`:

```haskell
data Expr = Num Integer  
           | Plus Expr Expr  
           | Times Expr Expr
```

Likewise one can easily write functions to traverse them:

```haskell
size :: Expr -> Integer
size (Num n) = 1
size (Plus e1 e2) =
    (size e1) + (size e2) + 1
size (Times e1 e2) =
    (size e1) + (size e2) + 1
```

In Scala, can define ASTs conveniently using `case classes`:

```scala
abstract class Expr

case class Num(n: Integer) extends Expr

case class Plus(e1: Expr, e2: Expr) extends Expr

case class Times(e1: Expr, e2: Expr) extends Expr
```

Again one can easily write functions to traverse them using pattern matching:

```scala
def size (e: Expr): Int = e match {
    case Num(n) => 1
    case Plus(e1,e2) =>
        size(e1) + size(e2) + 1
    case Times(e1,e2) =>
        size(e1) + size(e2) + 1
}
```

Java:

```java
new Plus(new Num(2), new Num(2))
```

Python:

```python
Plus(Num(2),Num(2))
```

Haskell:

```haskell
Plus(Num(2),Num(2))
```

Scala: (the “new” is optional for case classes):

```scala
new Plus(new Num(2),new Num(2))
new Plus(new Num(2),new Num(2))
new Plus(new Num(2),new Num(2))
```
Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end. Some languages, notably LISP/Scheme/Racket, eschew infix notation. All programs are essentially so-called S-Expressions:

\[s ::= a \mid (a_1 \cdots a_n) \]

so their concrete syntax is very close to abstract syntax.

For example

\[1 + 2 \quad \longrightarrow \quad (+ 1 2) \]
\[1 + 2 * 3 \quad \longrightarrow \quad (+ 1 (* 2 3)) \]
\[(1 + 2) * 3 \quad \longrightarrow \quad (* (+ 1 2) 3) \]

The three most important reasoning techniques for programming languages are:

- (Mathematical) induction
 - (over \(\mathbb{N} \))
- (Structural) induction
 - (over ASTs)
- (Rule) induction
 - (over derivations)

We will briefly review the first and present structural induction. We will cover rule induction later.

Recall the principle of mathematical induction.

Mathematical induction

Given a property \(P \) of natural numbers, if:

- \(P(0) \) holds
- for any \(n \in \mathbb{N} \), if \(P(n) \) holds then \(P(n+1) \) also holds

Then \(P(n) \) holds for all \(n \in \mathbb{N} \).

A similar principle holds for expressions:

Induction on structure of expressions

Given a property \(P \) of expressions, if:

- \(P(n) \) holds for every number \(n \in \mathbb{N} \)
- for any expressions \(e_1, e_2 \), if \(P(e_1) \) and \(P(e_2) \) holds then \(P(e_1 + e_2) \) also holds
- for any expressions \(e_1, e_2 \), if \(P(e_1) \) and \(P(e_2) \) holds then \(P(e_1 \times e_2) \) also holds

Then \(P(e) \) holds for all expressions \(e \).

Note that we are performing induction over abstract syntax trees, not numbers!
Proof of expression induction principle

Define the size of an expression in the obvious way:

\[
\begin{align*}
 \text{size}(n) &= 1 \\
 \text{size}(e_1 + e_2) &= \text{size}(e_1) + \text{size}(e_2) + 1 \\
 \text{size}(e_1 \times e_2) &= \text{size}(e_1) + \text{size}(e_2) + 1
\end{align*}
\]

Given \(P(\cdot) \) satisfying the assumptions of expression induction, we prove the property

\[
Q(n) = \text{for all } e \text{ with } \text{size}(e) < n \text{ we have } P(e)
\]

Since any expression \(e \) has a finite size, \(P(e) \) holds for any expression.

Proof.

We prove that \(Q(n) \) holds for all \(n \) by induction on \(n \):

- The base case \(n = 0 \) is vacuous
- For \(n + 1 \), then assume \(Q(n) \) holds and consider any \(e \) with \(\text{size}(e) < n + 1 \). Then there are three cases:
 - if \(e = m \in \mathbb{N} \) then \(P(e) \) holds by part 1 of expression induction principle
 - if \(e = e_1 + e_2 \) then \(\text{size}(e_1) < \text{size}(e) \leq n \) and similarly for \(\text{size}(e_2) < \text{size}(e) \leq n \). So, by induction, \(P(e_1) \) and \(P(e_2) \) hold, and by part 2 of expression induction principle \(P(e) \) holds.
 - if \(e = e_1 \times e_2 \), the same reasoning applies.

Summary

- We covered:
 - Concrete vs. Abstract syntax
 - Abstract syntax trees
 - Abstract syntax of L_{Arith} in several languages
 - Structural induction over syntax trees

- This might seem like a lot to absorb, but don’t worry! We will revisit and reinforce these concepts throughout the course.

- Next time:
 - Evaluation
 - A simple interpreter
 - Operational semantics rules