Today

Elements of Programming Languages

Lecture 1: Abstract syntax

James Cheney

University of Edinburgh

September 23, 2016

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction	Concrete vs. abstract syntax	Abstract syntax trees	Structural Induction
L _{Arith}			Concrete vs. abs	tract syntax	

- $\hbox{ We will start out with a very simple (almost trivial) } \hbox{ "programming language" called L_{Arith} to illustrate these concepts }$
- ullet Namely, expressions with integers, + and imes
- Examples:

- **Concrete syntax:** the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret **strings** as programs
- Abstract syntax: the "essential" constructs of a programming language
 - Specify using so-called Backus Naur Form (BNF) grammars
 - Used in specifications and implementations to describe the *abstract syntax trees* of a language.

CFG vs. BNF

Context-free grammar giving concrete syntax for expressions

$$E \rightarrow E \text{ PLUS } F \mid F$$
 $F \rightarrow F \text{ TIMES } F \mid \text{NUM} \mid \text{LPAREN } E \text{ RPAREN}$

- Needs to handle precedence, parentheses, etc.
- ullet Tokenization (+ ightarrow PLUS, etc.), comments, whitespace usually handled by a separate stage

BNF grammars

• BNF grammar giving abstract syntax for expressions

$$Expr \ni e ::= e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}$$

- This says: there are three kinds of expressions
 - Additions $e_1 + e_2$, where two expressions are combined with the + operator
 - Multiplications $e_1 \times e_2$, where two expressions are combined with the \times operator
 - Numbers $n \in \mathbb{N}$
- Much like CFG rules, we can "derive" more complex expressions:

$$e \rightarrow e_1 + e_2 \rightarrow 3 + e_2 \rightarrow 3 + (e_3 \times e_4) \rightarrow \cdots$$

《ロトペラトペラトペラト ラークへで Concrete vs. abstract syntax Abstract syntax trees Structural Induction

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

◆□ → ◆□ → ◆ ■ → ◆ ■ ・ り へ ○

Structural Induction

BNF conventions

- We will usually use BNF-style rules to define abstract syntax trees
 - and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
- **Convention:** the subscripts on occurrences of *e* on the RHS don't affect the meaning, just for readability
- **Convention:** we will freely use parentheses in abstract syntax notation to disambiguate
- e.g.

$$(1+2) \times 3$$
 vs. $1 + (2 \times 3)$

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of *abstract syntax trees*, for example:

These can be represented in a program as trees, or in other ways (which we will cover in due course)

Languages for examples

ASTs in Java

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
 - Sometimes others, to discuss specific features
- You do not need to already know all these languages!

```
• In Java ASTs can be defined using a class hierarchy:
  abstract class Expr {}
  class Num extends Expr {
    public int n;
    Num(int _n) {
        n = _n;
    }
}
```

◆ロ → ◆ 個 → ◆ 差 → を ● り へ ○

Concrete vs. abstract syntax Abstract syntax trees Structural Induction

I Induction Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

ASTs in Java

ASTs in Java

• In Java ASTs can be defined using a class hierarchy:

```
class Plus extends Expr {
  public Expr e1;
  public Expr e2;
  Plus(Expr _e1, Expr _e2) {
    e1 = _e1;
    e2 = _e2;
  }
}
class Times extends Expr {... // similar
}
```

```
• Traverse ASTs by adding a method to each class:
   abstract class Expr {
     abstract public int size();
}
   class Num extends Expr { ...
     public int size() { return 1;}
}
   class Plus extends Expr { ...
     public int size() {
        return e1.size(e1) + e2.size() + 1;
     }
}
   class Times extends Expr {... // similar
}
```

Concrete vs. abstract syntax Abstract syntax trees Structural Induction Concrete vs. abstract syntax Abstract syntax trees Structural Induction

ASTs in Python

ASTs in Haskell

• Python is similar, but shorter (no types):

```
class Expr:
    pass # "abstract"

class Num(Expr):
    def __init__(self,n):
        self.n = n
    def size(self): return 1

class Plus(Expr):
    def __init__(self,e1,e2):
        self.e1 = e1
        self.e2 = e2
    def size(self):
        return self.e1.size() + self.e2.size() + 1

class Times(Expr): # similar...
```

• In Haskell, ASTs are easily defined as datatypes:

• Likewise one can easily write functions to traverse them:

```
size :: Expr -> Integer
size (Num n) = 1
size (Plus e1 e2) =
  (size e1) + (size e2) + 1
size (Times e1 e2) =
  (size e1) + (size e2) + 1
```

4□ ト 4 億 ト 4 億 ト 4 億 ト 億 り 9 0 0

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

<□▶ <□▶ < ≣▶ < ≣▶ < ≣ ▶ 9<€

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

ASTs in Scala

Creating ASTs

- In Scala, can define ASTs conveniently using case classes: abstract class Expr case class Num(n: Integer) extends Expr case class Plus(e1: Expr, e2: Expr) extends Expr case class Times(e1: Expr, e2: Expr) extends Expr
- Again one can easily write functions to traverse them using pattern matching:

```
def size (e: Expr): Int = e match {
  case Num(n) => 1
  case Plus(e1,e2) =>
    size(e1) + size(e2) + 1
  case Times(e1,e2) =>
    size(e1) + size(e2) + 1
}
```

- Java: new Plus(new Num(2), new Num(2))
- Python:
 Plus(Num(2),Num(2))
- Haskell:

Plus(Num(2),Num(2))

Scala: (the "new" is optional for case classes:)
 new Plus(new Num(2), new Num(2))
 Plus(Num(2), Num(2))

Precedence, Parentheses and Parsimony

- Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end
- Some languages, notably LISP/Scheme/Racket, eschew infix notation.
- All programs are essentially so-called S-Expressions:

$$s ::= a \mid (a s_1 \cdots s_n)$$

so their concrete syntax is very close to abstract syntax.

For example

The three most important reasoning techniques

- The three most important reasoning techniques for programming languages are:
 - (Mathematical) induction
 - (over ℕ)
 - (Structural) induction
 - (over ASTs)
 - (Rule) induction
 - (over derivations)
- We will briefly review the first and present structural induction.
- We will cover rule induction later.

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

◆ロ > ◆昼 > ◆ き > ・ き の Q @

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

Induction

Induction over expressions

• Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

- *P*(0) holds
- for any $n \in \mathbb{N}$, if P(n) holds then P(n+1) also holds

Then P(n) holds for all $n \in \mathbb{N}$.

A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

- P(n) holds for every number $n \in \mathbb{N}$
- for any expressions e_1 , e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 + e_2)$ also holds
- for any expressions e_1, e_2 , if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 \times e_2)$ also holds

Then P(e) holds for all expressions e.

 Note that we are performing induction over abstract syntax trees, not numbers!

Proof of expression induction principle

Define the size of an expression in the obvious way:

$$size(n) = 1$$

 $size(e_1 + e_2) = size(e_1) + size(e_2) + 1$
 $size(e_1 \times e_2) = size(e_1) + size(e_2) + 1$

Given P(-) satisfying the assumptions of expression induction, we prove the property

$$Q(n) =$$
for all e with $size(e) < n$ we have $P(e)$

Since any expression e has a finite size, P(e) holds for any expression.

Concrete vs. abstract syntax

Abstract syntax trees

Structural Induction

Summary

- We covered:
 - Concrete vs. Abstract syntax
 - Abstract syntax trees
 - Abstract syntax of L_{Arith} in several languages
 - Structural induction over syntax trees
- This might seem like a lot to absorb, but don't worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
 - Evaluation
 - A simple interpreter
 - Operational semantics rules

Proof of expression induction principle

Proof.

We prove that Q(n) holds for all n by induction on n:

- The base case n = 0 is vacuous
- For n + 1, then assume Q(n) holds and consider any e with size(e) < n + 1. Then there are three cases:
 - if $e = m \in \mathbb{N}$ then P(e) holds by part 1 of expression induction principle
 - if $e = e_1 + e_2$ then $size(e_1) < size(e) \le n$ and similarly for $size(e_2) < size(e) \le n$. So, by induction, $P(e_1)$ and $P(e_2)$ hold, and by part 2 of expression induction principle P(e) holds.
 - if $e = e_1 \times e_2$, the same reasoning applies.

