Today

We will introduce some basic tools used throughout the course:

- Concrete vs. abstract syntax
- Abstract syntax trees
- Induction over expressions

L_{Arith}

- **Concrete syntax:** the actual syntax of a programming language
 - Specify using context-free grammars (or generalizations)
 - Used in compiler/interpreter front-end, to decide how to interpret *strings* as programs

- **Abstract syntax:** the “essential” constructs of a programming language
 - Specify using so-called *Backus Naur Form* (BNF) grammars
 - Used in specifications and implementations to describe the *abstract syntax trees* of a language.

Concrete vs. abstract syntax

We will start out with a very simple (almost trivial) “programming language” called L_{Arith} to illustrate these concepts.

Namely, expressions with integers, + and \times

Examples:

- \begin{align*}
 1 + 2 & \quad \longrightarrow \quad 3 \\
 1 + 2 \times 3 & \quad \longrightarrow \quad 7 \\
 (1 + 2) \times 3 & \quad \longrightarrow \quad 9
\end{align*}
Concrete vs. abstract syntax

- Context-free grammar giving concrete syntax for expressions

\[
E \rightarrow E\,\text{PLUS}\,F \mid F \\
F \rightarrow F\,\text{TIMES}\,F \mid \text{NUM} \mid \text{LPAREN}\,E\,\text{RPAREN}
\]

- Needs to handle precedence, parentheses, etc.
- Tokenization (+ → PLUS, etc.), comments, whitespace usually handled by a separate stage

Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract syntax trees, for example:

\[
\begin{align*}
\text{Expr} \ni e & := e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N} \\
\text{This says: there are three kinds of expressions} \\
\text{Additions } e_1 + e_2, \text{ where two expressions are combined with the } + \text{ operator} \\
\text{Multiplications } e_1 \times e_2, \text{ where two expressions are combined with the } \times \text{ operator} \\
\text{Numbers } n \in \mathbb{N} \\
\text{Much like CFG rules, we can "derive" more complex expressions:} \\
e \rightarrow e_1 + e_2 \rightarrow 3 + e_2 \rightarrow 3 + (e_3 \times e_4) \rightarrow \cdots
\end{align*}
\]

- BNF conventions:
 - We will usually use BNF-style rules to define abstract syntax trees
 - and assume that concrete syntax issues such as precedence, parentheses, whitespace, etc. are handled elsewhere.
 - **Convention**: the subscripts on occurrences of e on the RHS don’t affect the meaning, just for readability
 - **Convention**: we will freely use parentheses in abstract syntax notation to disambiguate
 - e.g.

\[
(1 + 2) \times 3 \quad \text{vs.} \quad 1 + (2 \times 3)
\]
Languages for examples

- We will use several languages for examples throughout the course:
 - Java: typed, object-oriented
 - Python: untyped, object-oriented with some functional features
 - Haskell: typed, functional
 - Scala: typed, combines functional and OO features
- Sometimes others, to discuss specific features
- You do not need to already know all these languages!

ASTs in Java

- In Java ASTs can be defined using a class hierarchy:
  ```java
  abstract class Expr {}
  class Num extends Expr {
    public int n;
    Num(int _n) {
      n = _n;
    }
  }
  class Plus extends Expr {
    public Expr e1;
    public Expr e2;
    Plus(Expr _e1, Expr _e2) {
      e1 = _e1;
      e2 = _e2;
    }
  }
  class Times extends Expr {... // similar
  }
  ```

- Traverse ASTs by adding a method to each class:
  ```java
  abstract class Expr {
    abstract public int size();
  }
  class Num extends Expr {
    public int size() {
      return 1;
    }
  }
  class Plus extends Expr {
    public int size() {
      return e1.size() + e2.size() + 1;
    }
  }
  class Times extends Expr {... // similar
  }
ASTs in Python

- Python is similar, but shorter (no types):

```python
class Expr:
 pass # "abstract"

class Num(Expr):
 def __init__(self, n):
 self.n = n
 def size(self): return 1

class Plus(Expr):
 def __init__(self, e1, e2):
 self.e1 = e1
 self.e2 = e2
 def size(self):
 return self.e1.size() + self.e2.size() + 1

class Times(Expr): # similar...
```

ASTs in Haskell

- In Haskell, ASTs are easily defined as **datatypes**:

```haskell
data Expr = Num Integer
 | Plus Expr Expr
 | Times Expr Expr
```

- Likewise one can easily write functions to traverse them:

```haskell
size :: Expr -> Integer
size (Num n) = 1
size (Plus e1 e2) =
 (size e1) + (size e2) + 1
size (Times e1 e2) =
 (size e1) + (size e2) + 1
```

ASTs in Scala

- In Scala, can define ASTs conveniently using **case classes**:

```scala
abstract class Expr

case class Num(n: Integer) extends Expr

case class Plus(e1: Expr, e2: Expr) extends Expr

case class Times(e1: Expr, e2: Expr) extends Expr
```

- Again one can easily write functions to traverse them using pattern matching:

```scala
def size (e: Expr): Int = e match {
 case Num(n) => 1
 case Plus(e1,e2) =>
 size(e1) + size(e2) + 1
 case Times(e1,e2) =>
 size(e1) + size(e2) + 1
}
```

Creating ASTs

- Java:

```java
new Plus(new Num(2), new Num(2))
```

- Python:

```python
Plus(Num(2),Num(2))
```

- Haskell:

```haskell
Plus(Num(2),Num(2))
```

- Scala: (the “new” is optional for case classes:)

```scala
new Plus(new Num(2),new Num(2))
Plus(Num(2),Num(2))
```
Infix notation and operator precedence rules are convenient for programmers (looks like familiar math) but complicate language front-end.

Some languages, notably LISP/Scheme/Racket, eschew infix notation.

All programs are essentially so-called S-Expressions:

\[ s ::= a \mid (s_1 \cdots s_n) \]

so their concrete syntax is very close to abstract syntax.

For example:

\[
\begin{align*}
1 + 2 & \rightarrow (+ 1 2) \\
1 + 2 \times 3 & \rightarrow (+ 1 (* 2 3)) \\
(1 + 2) \times 3 & \rightarrow (* (+ 1 2) 3)
\end{align*}
\]

The three most important reasoning techniques for programming languages are:

- (Mathematical) induction (over \(\mathbb{N}\))
- (Structural) induction (over ASTs)
- (Rule) induction (over derivations)

We will briefly review the first and present structural induction.

We will cover rule induction later.

A similar principle holds for expressions:

**Induction on structure of expressions**

Given a property \(P\) of expressions, if:

- \(P(0)\) holds
- for any \(n \in \mathbb{N}\), if \(P(n)\) holds then \(P(n + 1)\) also holds

Then \(P(e)\) holds for all \(e \in \mathbb{E}\).

Note that we are performing induction over abstract syntax trees, not numbers!
Proof of expression induction principle

Define the \textit{size} of an expression in the obvious way:

\[
\begin{align*}
size(n) &= 1 \\
size(e_1 + e_2) &= size(e_1) + size(e_2) + 1 \\
size(e_1 \times e_2) &= size(e_1) + size(e_2) + 1
\end{align*}
\]

Given \(P(\cdot)\) satisfying the assumptions of expression induction, we prove the property

\[Q(n) = \text{for all } e \text{ with } size(e) < n \text{ we have } P(e)\]

Since any expression \(e\) has a finite size, \(P(e)\) holds for any expression.

Proof.

We prove that \(Q(n)\) holds for all \(n\) by induction on \(n\):

- The base case \(n = 0\) is vacuous
- For \(n + 1\), then assume \(Q(n)\) holds and consider any \(e\) with \(size(e) < n + 1\). Then there are three cases:
  - if \(e = m \in \mathbb{N}\) then \(P(e)\) holds by part 1 of expression induction principle
  - if \(e = e_1 + e_2\) then \(size(e_1) < size(e) \leq n\) and similarly for \(size(e_2) < size(e) \leq n\). So, by induction, \(P(e_1)\) and \(P(e_2)\) hold, and by part 2 of expression induction principle \(P(e)\) holds.
  - if \(e = e_1 \times e_2\), the same reasoning applies.

Summary

- We covered:
  - Concrete vs. Abstract syntax
  - Abstract syntax trees
  - Abstract syntax of \(L_{\text{Arith}}\) in several languages
  - Structural induction over syntax trees
- This might seem like a lot to absorb, but don’t worry! We will revisit and reinforce these concepts throughout the course.
- Next time:
  - Evaluation
  - A simple interpreter
  - Operational semantics rules