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Today

We will introduce some basic tools used throughout the
course:

Concrete vs. abstract syntax

Abstract syntax trees

Induction over expressions
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LArith

We will start out with a very simple (almost trivial)
“programming language” called LArith to illustrate these
concepts

Namely, expressions with integers, + and ⇥
Examples:

1 + 2 ---> 3

1 + 2 * 3 ---> 7

(1 + 2) * 3 ---> 9
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Concrete vs. abstract syntax

Concrete syntax: the actual syntax of a programming
language

Specify using context-free grammars (or generalizations)
Used in compiler/interpreter front-end, to decide how to
interpret strings as programs

Abstract syntax: the “essential” constructs of a
programming language

Specify using so-called Backus Naur Form (BNF)
grammars
Used in specifications and implementations to describe
the abstract syntax trees of a language.



Concrete vs. abstract syntax Abstract syntax trees Structural Induction

CFG vs. BNF

Context-free grammar giving concrete syntax for
expressions

E ! E PLUS F | F

F ! F TIMES F | NUM | LPAREN E RPAREN

Needs to handle precedence, parentheses, etc.

Tokenization (+ ! PLUS, etc.), comments, whitespace
usually handled by a separate stage
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BNF grammars

BNF grammar giving abstract syntax for expressions

Expr 3 e ::= e1 + e2 | e1 ⇥ e2 | n 2 N

This says: there are three kinds of expressions

Additions e1 + e2, where two expressions are combined
with the + operator
Multiplications e1 ⇥ e2, where two expressions are
combined with the ⇥ operator
Numbers n 2 N

Much like CFG rules, we can ”derive” more complex
expressions:

e ! e1 + e2 ! 3 + e2 ! 3 + (e3 ⇥ e4) ! · · ·
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BNF conventions

We will usually use BNF-style rules to define abstract
syntax trees

and assume that concrete syntax issues such as
precedence, parentheses, whitespace, etc. are handled
elsewhere.

Convention: the subscripts on occurrences of e on the
RHS don’t a↵ect the meaning, just for readability

Convention: we will freely use parentheses in abstract
syntax notation to disambiguate

e.g.
(1 + 2) ⇥ 3 vs. 1 + (2 ⇥ 3)
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Abstract Syntax Trees (ASTs)

We view a BNF grammar to define a collection of abstract
syntax trees, for example:

+

1 2

+

1 ⇥

2 3

⇥

+

1 2

3

These can be represented in a program as trees, or in other
ways (which we will cover in due course)
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Languages for examples

We will use several languages for examples throughout
the course:

Java: typed, object-oriented
Python: untyped, object-oriented with some functional
features
Haskell: typed, functional
Scala: typed, combines functional and OO features
Sometimes others, to discuss specific features

You do not need to already know all these languages!
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ASTs in Java

In Java ASTs can be defined using a class hierarchy:

abstract class Expr {}

class Num extends Expr {

public int n;

Num(int _n) {

n = _n;

}

}
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ASTs in Java

In Java ASTs can be defined using a class hierarchy:

...

class Plus extends Expr {

public Expr e1;

public Expr e2;

Plus(Expr _e1, Expr _e2) {

e1 = _e1;

e2 = _e2;

}

}

class Times extends Expr {... // similar

}
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ASTs in Java

Traverse ASTs by adding a method to each class:

abstract class Expr {

abstract public int size();

}

class Num extends Expr { ...

public int size() { return 1;}

}

class Plus extends Expr { ...

public int size() {

return e1.size(e1) + e2.size() + 1;

}

}

class Times extends Expr {... // similar

}
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ASTs in Python

Python is similar, but shorter (no types):

class Expr:

pass # "abstract"

class Num(Expr):

def __init__(self,n):

self.n = n

def size(self): return 1

class Plus(Expr):

def __init__(self,e1,e2):

self.e1 = e1

self.e2 = e2

def size(self):

return self.e1.size() + self.e2.size() + 1

class Times(Expr): # similar...
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ASTs in Haskell

In Haskell, ASTs are easily defined as datatypes:

data Expr = Num Integer

| Plus Expr Expr

| Times Expr Expr

Likewise one can easily write functions to traverse them:

size :: Expr -> Integer

size (Num n) = 1

size (Plus e1 e2) =

(size e1) + (size e2) + 1

size (Times e1 e2) =

(size e1) + (size e2) + 1
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ASTs in Scala

In Scala, can define ASTs conveniently using case classes:
abstract class Expr

case class Num(n: Integer) extends Expr

case class Plus(e1: Expr, e2: Expr) extends Expr

case class Times(e1: Expr, e2: Expr) extends Expr

Again one can easily write functions to traverse them
using pattern matching:
def size (e: Expr): Int = e match {

case Num(n) => 1

case Plus(e1,e2) =>

size(e1) + size(e2) + 1

case Times(e1,e2) =>

size(e1) + size(e2) + 1

}
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Creating ASTs

Java:

new Plus(new Num(2), new Num(2))

Python:

Plus(Num(2),Num(2))

Haskell:

Plus(Num(2),Num(2))

Scala: (the “new” is optional for case classes:)

new Plus(new Num(2),new Num(2))

Plus(Num(2),Num(2))
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Precedence, Parentheses and Parsimony

Infix notation and operator precedence rules are
convenient for programmers (looks like familiar math) but
complicate language front-end

Some languages, notably LISP/Scheme/Racket, eschew
infix notation.

All programs are essentially so-called S-Expressions:

s ::= a | (a s1 · · · sn)

so their concrete syntax is very close to abstract syntax.

For example

1 + 2 ---> (+ 1 2)

1 + 2 * 3 ---> (+ 1 (* 2 3))

(1 + 2) * 3 ---> (* (+ 1 2) 3)
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The three most important reasoning techniques

The three most important reasoning techniques for
programming languages are:

(Mathematical) induction

(over N)

(Structural) induction

(over ASTs)

(Rule) induction

(over derivations)

We will briefly review the first and present structural
induction.

We will cover rule induction later.
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Induction

Recall the principle of mathematical induction

Mathematical induction

Given a property P of natural numbers, if:

P(0) holds

for any n 2 N, if P(n) holds then P(n + 1) also holds

Then P(n) holds for all n 2 N.
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Induction over expressions

A similar principle holds for expressions:

Induction on structure of expressions

Given a property P of expressions, if:

P(n) holds for every number n 2 N

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 ⇥ e2) also holds

Then P(e) holds for all expressions e.

Note that we are performing induction over abstract
syntax trees, not numbers!
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Proof of expression induction principle

Define the size of an expression in the obvious way:

size(n) = 1

size(e1 + e2) = size(e1) + size(e2) + 1

size(e1 ⇥ e2) = size(e1) + size(e2) + 1

Given P(�) satisfying the assumptions of expression induction,
we prove the property

Q(n) = for all e with size(e) < n we have P(e)

Since any expression e has a finite size, P(e) holds for any
expression.
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Proof of expression induction principle

Proof.

We prove that Q(n) holds for all n by induction on n:

The base case n = 0 is vacuous

For n + 1, then assume Q(n) holds and consider any e
with size(e) < n + 1. Then there are three cases:

if e = m 2 N then P(e) holds by part 1 of expression
induction principle
if e = e1 + e2 then size(e1) < size(e)  n and similarly
for size(e2) < size(e)  n. So, by induction, P(e1) and
P(e2) hold, and by part 2 of expression induction
principle P(e) holds.
if e = e1 ⇥ e2, the same reasoning applies.
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Summary

We covered:

Concrete vs. Abstract syntax
Abstract syntax trees
Abstract syntax of LArith in several languages
Structural induction over syntax trees

This might seem like a lot to absorb, but don’t worry! We
will revisit and reinforce these concepts throughout the
course.

Next time:

Evaluation
A simple interpreter
Operational semantics rules


