Elements of Programming Languages Tutorial 4: Subtyping and imperative programming Week 6 (October 26–30, 2015)

Exercises marked * are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Imperative programming

Write evaluation derivations for the following imperative programs, starting with the environment $\sigma = [x = 3, y = 4]$.

- (a) y := x + x
- (b) if x == y then x := x + 1 else y := y + 2
- (c) while x < y do x := x + 1

2. Subtyping and type bounds

Consider the following Scala code:

```
abstract class Super
case class Sub1(n: Int) extends Super
case class Sub2(b: Boolean) extends Super
```

This defines an abstract superclass Super, and subclasses with integer and boolean parameters.

- (a) What subtyping relationships hold as a result of the above declarations?
- (b) For each of the following subtyping judgments, write a derivation showing the judgment holds or argue that it doesn't hold.
 - i. $Sub1 \times Sub2 <: Super \times Super$
 - ii. $Sub1 \rightarrow Sub2 \lt: Super \rightarrow Super$
 - iii. $Super \rightarrow Super <: Sub1 \rightarrow Sub2$
 - iv. $Super \rightarrow Sub1 <: Sub2 \rightarrow Super$
 - v. (*) $(Sub1 \rightarrow Sub1) \rightarrow Sub2 <: (Super \rightarrow Sub1) \rightarrow Super$
- (c) Suppose we have a function

```
def f1(x: Super): Super = x match {
   case Sub1(n) => x
   case Sub2(b) => x
}
```

that simply inspects the type of the argument but preserves the value. Try running f1 on Sub2(true). What type does it have? What happens if you try to access the b field of the result? (d) Now consider a different version of this function:

```
def f2[A] (x: A): A = x match {
   case Sub1(n) => x
   case Sub2(b) => x
}
```

where we have abstracted over the argument type. Does this typecheck? Why or why not? If it typechecks, what happens if we apply it to values of type Sub1, Sub2, Int?

(e) Finally, consider this version:

```
def f3[A <: Super](x: A): A = x match {
   case Sub1(n) => x
   case Sub2(b) =>x
}
```

Here, we have used Scala's support for a feature called *type bounds* to constrain A to be a subtype of Super, with return type A. Does this type-check? Why or why not? If it typechecks, does it solve the problems we encountered with f1 and f2?

3. Lists

We could add built-in lists to L_{Poly} as follows:

```
e ::= \cdots | \operatorname{nil} | e_1 :: e_2 | \operatorname{case_{list}} e \text{ of } \{ \operatorname{nil} \Rightarrow e_1 ; x :: y \Rightarrow e_2 \}

v ::= \cdots | \operatorname{nil} | v_1 :: v_2

\tau ::= \cdots | \operatorname{list}[\tau]
```

Define L_{List} to be L_{Poly} extended with the above constructs.

The typing rule for caselist is:

$$\frac{\Gamma \vdash e: \texttt{list}[\tau] \quad \Gamma \vdash e_1 : \tau' \quad \Gamma, x:\tau, y:\texttt{list}[\tau] \vdash e_2 : \tau'}{\Gamma \vdash \texttt{case}_{\texttt{list}} e \text{ of } \{\texttt{nil} \Rightarrow e_1 ; x :: y \Rightarrow e_2\} : \tau'}$$

The basic idea here is: Given a list e, a case_{list} expression does a case analysis. If e evaluates to nil, then we evaluate e_1 . Otherwise, e must evaluate to a non-empty list of the form v :: v', and we bind x to the head element v and y to the tail v', and evaluate e_2 .

- (a) Write appropriate typing rules for nil and :...
- (b) Write a polymorphic function *map* that has this type:

$$\forall A. \forall B. (A \to B) \to (\texttt{list}[A] \to \texttt{list}[B])$$

so that map(f)(l) is the function that traverses a list of *A*'s and, for each element *x* in *l*, applies the function *f* to it.

(c) Write out a typing derivation tree for the expression

$$map[\texttt{int}][\texttt{int}](\lambda x.x+1)(2::\texttt{nil})$$

assuming that *map* has the type given above.

- (d) (\star) Write appropriate evaluation rules for the above constructs.
- (e) (*) Are lists and their associated operations definable in L_{Poly} already? Why or why not?