
Elements of Programming Languages
Tutorial 3: Data structures and polymorphism

October 19–23, 2015

Exercises marked ? are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Pairs, variants, and polymorphism in Scala

Scala includes built-in pair types (T1,T2), with pairing written (e1,e2) and
projection written e._1, e._2. Likewise, Scala’s library includes binary sums
Either[T1,T2] with constructors Left(_) and Right(_). Pattern matching
can be used to analyze Either[T1,T2]. Using these operations, write poly-
morphic Scala functions having the following types, polymorphic in A,B,C:

(a) (A,B) => (B,A)

(b) Either[A,B] => Either[B,A]

(c) ((A,B) => C) => (A => (B => C))

(d) (A => (B => C)) => ((A,B) => C)

(e) (Either[A,B] => C) => (A => C, B => C)

(f) (A => C, B => C) => (Either[A,B] => C)

2. Typing derivations

Construct typing derivations for the following expressions, or argue why
they are not well-formed:

(a) ΛA.λx:A.x+ 1

(b) λx:int + bool.case x of {left(y)⇒ y == 0 ; right(z)⇒ z}
(c) λx:int× int.if fst x == snd x then left(fst x) else right(snd x)

(d) (?) ΛA.λx:A×A.if fst x == snd x then fst x else snd x

3. Evaluation derivations

Construct evaluation derivations for the following expressions, or explain
why they do not evaluate:

(a) (ΛA.λx:A.x+ 1)[int] 42

(b) (ΛA.λx:A.x+ 1)[bool] true

4. Multiple argument functions

So far, our function definitions take only one argument. Consider LData with
named functions extended with multi-argument function definitions and ap-
plications:

e ::= · · · | let fun f(x1 : τ1, x2 : τ2) = e1 in e2 | f(e1, e2)

1

(a) Write appropriate typing rules for these constructs.

(b) Show that these constructs can be defined in LData.

(c) What about functions of three or more arguments?

5. (?) Mutual recursion

In Lecture 5, we considered a simple form of recursion that just defines one
recursive function with one argument. Part 4 of this tutorial showed how to
accommodate multiple arguments. But what about mutual recursion?

A simple example is

let rec even(x:int) : bool = if x == 0 then true else odd(x− 1)
and odd(x:int) : bool = if x == 0 then false else even(x− 1)
in e

Show that we can use pairing and rec to define these mutually recursive
functions, by filling in the following template with an expression having type
unit→ ((int→ bool)× (int→ bool)) with the desired behavior:

let p = · · · in
let even = fst p() in
let odd = snd p() in
e

2

