Elements of Programming Languages Tutorial 3: Data structures and polymorphism October 19–23, 2015

Exercises marked \star are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Pairs, variants, and polymorphism in Scala

Scala includes built-in pair types (T1, T2), with pairing written (e1, e2) and projection written e._1, e._2. Likewise, Scala's library includes binary sums Either[T1,T2] with constructors $\texttt{Left}(_)$ and $\texttt{Right}(_)$. Pattern matching can be used to analyze Either[T1,T2]. Using these operations, write polymorphic Scala functions having the following types, polymorphic in A, B, C:

- (a) (A, B) => (B, A)
- (b) Either[A,B] => Either[B,A]
- (c) $((A,B) \Rightarrow C) \Rightarrow (A \Rightarrow (B \Rightarrow C))$
- (d) $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A, B) \Rightarrow C)$
- (e) (Either[A,B] \Rightarrow C) \Rightarrow (A \Rightarrow C, B \Rightarrow C)
- (f) (A => C, B => C) => (Either[A,B] => C)

2. Typing derivations

Construct typing derivations for the following expressions, or argue why they are not well-formed:

- (a) $\Lambda A.\lambda x:A.x+1$
- (b) λx :int + bool.case x of $\{ \text{left}(y) \Rightarrow y == 0 \; ; \; \text{right}(z) \Rightarrow z \}$
- (c) $\lambda x : \mathtt{int} \times \mathtt{int}.\mathtt{if} \ \mathtt{fst} \ x == \mathtt{snd} \ x \ \mathtt{then} \ \mathtt{left}(\mathtt{fst} \ x) \ \mathtt{else} \ \mathtt{right}(\mathtt{snd} \ x)$
- (d) (\star) $\Lambda A.\lambda x: A \times A.$ if fst x ==snd x then fst x else snd x

3. Evaluation derivations

Construct evaluation derivations for the following expressions, or explain why they do not evaluate:

- (a) $(\Lambda A.\lambda x:A.x+1)[int]$ 42
- (b) $(\Lambda A.\lambda x:A.x+1)$ [bool] true

4. Multiple argument functions

So far, our function definitions take only one argument. Consider L_{Data} with named functions extended with multi-argument function definitions and applications:

$$e := \cdots \mid \text{let fun } f(x_1 : \tau_1, x_2 : \tau_2) = e_1 \text{ in } e_2 \mid f(e_1, e_2)$$

- (a) Write appropriate typing rules for these constructs.
- (b) Show that these constructs can be defined in L_{Data}.
- (c) What about functions of three or more arguments?

5. (⋆) Mutual recursion

In Lecture 5, we considered a simple form of recursion that just defines one recursive function with one argument. Part 4 of this tutorial showed how to accommodate multiple arguments. But what about mutual recursion?

A simple example is

```
let rec even(x:int) : bool = if x==0 then true else odd(x-1) and odd(x:int) : bool = if x==0 then false else even(x-1) in e
```

Show that we can use pairing and rec to define these mutually recursive functions, by filling in the following template with an expression having type $\mathtt{unit} \to ((\mathtt{int} \to \mathtt{bool}) \times (\mathtt{int} \to \mathtt{bool}))$ with the desired behavior:

```
\begin{array}{l} \texttt{let}\; p = \cdots \; \texttt{in} \\ \texttt{let}\; even = \texttt{fst}\; p() \; \texttt{in} \\ \texttt{let}\; odd = \texttt{snd}\; p() \; \texttt{in} \\ e \end{array}
```