Overview

- We’ve now covered the basics of a functional programming language, including functions and more complex data structures
- Over the next few lectures, we will consider various forms of abstraction
 - polymorphism, type inference
 - type definitions, records, datatypes
 - subtyping
 - modules, interfaces
- Today:
 - polymorphism and type inference

Consider the humble identity function

- A function that returns its input:
  ```scala
def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int, String)) = x
```
- Does the same thing no matter what the type is.
- But we cannot just write this:
  ```scala
def id(x) = x
```
 (In Scala, every variable needs to have a type.)

Another example

- Consider a pair “swap” operation:
  ```scala
def swapInt(p: (Int, Int)) = (p._2, p._1)
def swapString(p: (String, String)) = (p._2, p._1)
def swapIntString(p: (Int, String)) = (p._2, p._1)
```
- Again, the code is the same in both cases; only the types differ.
- But we can’t write
  ```scala
def swap(p) = (p._2, p._1)
```
 What type should p have?
Another example

- Consider a higher-order function that calls its argument twice:
  ```scala
def twiceInt(f: Int => Int) = {x: Int => f(f(x))}
def twiceStr(f: String => String) = {x: String => f(f(x))}
```

- Again, the code is the same in both cases; only the types differ.
- But we can’t write
  ```scala
def twice(f) = {x => f(f(x))}
```
 What types should \(f\) and \(x\) have?

Type parameters

- In Scala, function definitions can have type parameters.
  ```scala
def id[A](x: A): A = x
```
 This says: given a type \(A\), the function \(id[A]\) takes an \(A\) and returns an \(A\).

- Scala’s type parameters are an example of a phenomenon called polymorphism (= “many shapes”).
- More specifically, parametric polymorphism because the function is parameterized by the type.
 - Its behavior cannot “depend on” what type replaces parameter \(A\).
 - The type parameter \(A\) is abstract.
- We also sometimes refer to \(A\), \(B\), \(C\) etc. as type variables.

Polymorphism: More examples

- Polymorphism is even more useful in combination with higher-order functions.
  ```scala
def compose[A,B,C](f: A => B, g: B => C) = {x:A => g(f(x))}
```
 Recall compose from the lab:
  ```scala
def compose[A,B,C](f: A => B, g: B => C) = {x:A => g(f(x))}
```
 Likewise, the \(map\) and \(filter\) functions:
  ```scala
def map[A,B](f: A => B, x: List[A]): List[B] = ...
def filter[A](f: A => Bool, x: List[A]): List[A] = ...
```
 (though in Scala these are usually defined as methods of \(List[A]\) so the \(A\) type parameter and \(x\) variable are implicit)
Formalization

- We add **type variables** A, B, C, \ldots, **type abstractions**, **type applications**, and **polymorphic types**:

 $e ::= \cdots | \Lambda A. \ e | e[\tau]$

 $\tau ::= \cdots | A | \forall A. \ \tau$

- We also use (capture-avoiding) substitution of types for type variables in expressions and types.

- The type $\forall A. \ \tau$ is the type of expressions that can have type $\tau[\tau'/A]$ for any choice of A. (A is bound in τ.)

- The expression $\Lambda A. \ e$ introduces a type variable for use in e. (Thus, A is bound in any type annotations in e.)

- The expression $e[\tau]$ instantiates a type abstraction

- Define L_{Poly} to be the extension of L_{Data} with these features

Formalization: Type and type variables

- Complication: Types now have variables. What is their scope? When is a type variable in scope in a type?

- The polymorphic type $\forall A. \ \tau$ binds A in τ.

- We write $FTV(\tau)$ for the free type variables of a type:

 $\begin{align*}
 FTV(A) &= \{A\} \\
 FTV(\tau_1 \times \tau_2) &= FTV(\tau_1) \cup FTV(\tau_2) \\
 FTV(\tau_1 + \tau_2) &= FTV(\tau_1) \cup FTV(\tau_2) \\
 FTV(\forall A. \ \tau) &= FTV(\tau) - \{A\} \\
 FTV(\tau) &= \emptyset \text{ otherwise}
 \end{align*}$

- Alpha-equivalence and type substitution are defined similarly to expressions.

Formalization: Typechecking polymorphic expressions

- Idea: $\Lambda A. \ e$ must typecheck with parameter A not already used elsewhere in type context

- $e[\tau_0]$ applies a polymorphic expression to a type. Result type obtained by substituting for A

- (Technically, we also need to extend FTV to contexts)

- The other rules are unchanged

Formalization: Semantics of polymorphic expressions

- To model evaluation, we add type abstraction as a possible value form:

 $v ::= \cdots | \Lambda A. \ e$

- with rules similar to those for λ and application:

 $\begin{align*}
 e \Downarrow v \text{ for } L_{\text{Poly}} & \quad e \Downarrow \Lambda A. \ e_0 \quad e_0 \Downarrow v \\
 e[\tau] \Downarrow v & \quad \Lambda A. \ e \Downarrow \Lambda A. \ e
 \end{align*}$

- In L_{Poly}, type information is irrelevant at run time.

- (Other languages, including Scala, retain some run time type information.)
Convenient notation

- We can augment the syntactic sugar for function definitions to allow type parameters:

 \[
 \text{let fun } f[A](x : \tau) = e \text{ in } \ldots
 \]

- This is equivalent to:

 \[
 \text{let } f = \Lambda A. \lambda x : \tau. e \text{ in } \ldots
 \]

- In either case, a function call can be written as

 \[f[\tau](x)\]

Examples in L_Poly

- Identity function

 \[id = \Lambda A. \lambda x : A. x\]

- Swap

 \[swap = \Lambda A. \Lambda B. \lambda x : A \times B. (\text{snd } x, \text{fst } x)\]

- Twice

 \[twice = \Lambda A. \lambda f : A \to A. \lambda x : A. f(f(x))\]

- For example:

 \[\text{swap[int][str]}(1, "a") \downarrow ("a", 1)\]

 \[\text{twice[int]}(\lambda x : 2 \times x)(2) \downarrow 8\]

Examples, typechecked

\[
\begin{align*}
A; x : A & \vdash x : A \\
\emptyset & \vdash \lambda x : A. x : A \to A & A \notin FTV(\emptyset) \\
\emptyset & \vdash \Lambda A. \lambda x : A. x : \forall A. A \to A
\end{align*}
\]

\[
\begin{align*}
\vdash swap : \forall A. \forall B. A \times B \to B \times A \\
\vdash swap[int] : \forall B. \text{int} \times B \to B \times \text{int} \\
\vdash swap[int][str] : \text{int} \times \text{str} \to \text{str} \times \text{int}
\end{align*}
\]

Lists and parameterized types

- In Scala (and other languages such as Haskell and ML), we can parameterize types by other types.
- \text{List[_]} is an example: given a type \(T\), it constructs another type \text{List}[\(T\)]
- Such types are sometimes called \textit{type constructors}
- (Later tutorial will cover adding lists to L_Poly)
- We will revisit parameterized types when we cover type definitions and modules
Historically, parametric polymorphism is one of several related techniques for "code reuse" or "overloading".
- Parametric polymorphism: abstraction over type parameters
- Subtype polymorphism: reuse based on inclusion relations between types.
- Ad hoc polymorphism: Reuse of same name for multiple (potentially type-dependent) implementations (e.g. overloading + for addition on different numeric types, string concatenation etc.)

These have some overlap.
- We will cover overloading and subtyping in future lectures.

As seen in even small examples, specifying the type parameters of polymorphic functions quickly becomes tiresome:

\[\text{swap}[ext{int}][ext{str}] \quad \text{map}[ext{int}][ext{str}] \quad \ldots \]

Idea: Can we have the benefits of (polymorphic) typing, without the costs? (or at least: with fewer annotations)

Type inference: Given a program without full type information (or with some missing), infer type annotations so that the program can be typechecked.

As an example, consider \(\text{swap} \) defined as follows:

\[
\lambda x : A. (\text{snd} \ x, \text{fst} \ x) : B
\]

\(A, B \) are the as yet unknown types of \(x \) and \(\text{swap} \).

A lambda abstraction creates a function: hence
\(B = A \rightarrow A_1 \) for some \(A_1 \) such that
\[
x : A \vdash (\text{snd} \ x, \text{fst} \ x) : A_1
\]

A pair constructs a pair type: hence \(A_1 = A_2 \times A_3 \) where
\[
x : A \vdash \text{snd} \ x : A_2 \quad \text{and} \quad x : A \vdash \text{fst} \ x : A_3
\]

This can only be the case if \(x : A_3 \times A_2 \), i.e. \(A = A_3 \times A_2 \).

Solving the constraints: \(A = A_3 \times A_2 \), \(A_1 = A_2 \times A_3 \) and so \(B = A_2 \times A_3 \rightarrow A_3 \times A_2 \)
Let-bound polymorphism [Non-examinable]

- An important additional idea was introduced in the ML programming language, to avoid the need to explicitly introduce type variables and apply polymorphic functions to type arguments.
- When a function is defined using `let fun` (or `let rec`), first infer a type:

 \[
 \text{swap} : A_2 \times A_3 \rightarrow A_3 \times A_2
 \]

- Then abstract over all of its free type parameters.

 \[
 \text{swap} : \forall A. \forall B. A \times B \rightarrow B \times A
 \]

- Finally, when a polymorphic function is applied, infer the missing types.

 \[
 \text{swap}(1, "a") \leadsto \text{swap}[^\text{int}][^\text{str}](1, "a")
 \]

ML-style inference: strengths and weaknesses

- **Strengths**
 - Elegant and effective
 - Requires no type annotations at all

- **Weaknesses**
 - Can be difficult to explain errors
 - In theory, can have exponential time complexity (in practice, it runs efficiently on real programs)
 - Very sensitive to extension: subtyping and other extensions to the type system tend to require giving up some nice properties

(We are intentionally leaving out a lot of technical detail — HM type inference is covered in more detail in ITCS.)

Type inference in Scala

- Scala does not employ full HM type inference, but uses many of the same ideas.
- Type information in Scala flows from function arguments to their results.

```scala
def f[A](x: List[A]): List[(A,A)] = ...
f(List(1,2,3)) // A must be Int, don’t need f[Int]
```

- Type information does **not** flow across arguments in the same argument list:

```scala
def map[A](f: A => B, l: List[A]): List[B] = ...
scala> map({x: Int => x + 1}, List(1,2,3))
res0: List[Int] = List(2, 3, 4)
scala> map({x => x + 1}, List(1,2,3))
<console>:25: error: missing parameter type
```

- But it **can** flow from earlier argument lists to later ones:

```scala
def map2[A](l: List[A])(f: A => B): List[B] = ...
scala> map2(List(1,2,3)) {x => x + 1}
res1: List[Int] = List(2, 3, 4)
```
Type inference in Scala: strengths and limitations

- Compared to Java, many fewer annotations needed
- Compared to ML, Haskell, etc. many more annotations needed
- The reason has to do with Scala’s integration of polymorphism and subtyping
 - needed for integration with Java-style object/class system
 - Combining subtyping and polymorphism is tricky (type inference can easily become undecidable)
 - Scala chooses to avoid global constraint-solving and instead propagate type information locally
- More on subtyping in next lecture!

Summary

- Today we covered:
 - The idea of thinking of the same code as having many different types
 - Parametric polymorphism: makes the type parameter explicit and abstract
 - Brief coverage of type inference.
- Next time:
 - Records, subtyping, and pattern matching