Elements of Programming Languages Lecture 6: Data structures

James Cheney

University of Edinburgh

October 13, 2015

The story so far

- We've now covered the main ingredients of any programming language:
 - Abstract syntax
 - Semantics/interpretation
 - Types
 - Variables and binding
 - Functions and recursion
- but only in the context of a very weak language: there are no "data structures" (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes, interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.

- The simplest way to combine data structures: pairing
 - (1,2) (true,false) (1,(true, $\lambda x:int.x+2)$)
- If we have a pair, we can *extract* one of the components:

$$\texttt{fst}\ (1,2) \rightsquigarrow 1 \qquad \texttt{snd}\ (\texttt{true},\texttt{false}) \rightsquigarrow \texttt{false}$$

 $\operatorname{snd}(1,(\operatorname{true},\lambda x:\operatorname{int}.x+2)) \rightsquigarrow (\operatorname{true},\lambda x:\operatorname{int}.x+2)$

• Finally, we can often *pattern match* against a pair, to extract both components at once:

let pair
$$(x, y) = (1, 2)$$
 in $(y, x) \rightsquigarrow (2, 1)$

Pairs in various languages

Haskell	Scala	Java
(1,2)	(1,2)	new Pair(1,2)
fst e	e1	e.getFirst()
snd e	e2	e.getSecond()
let $(x,y) =$	val (x,y) =	N/A

- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have "record", "struct" or "class" structures that accommodate multiple, named fields.
 - A pair type can be defined but is not built-in and there is no support for pattern-matching

Syntax and Semantics of Pairs

• Syntax of pair expressions and values:

$$\begin{array}{rcl} e & ::= & \cdots \mid (e_1, e_2) \mid \texttt{fst} \; e \mid \texttt{snd} \; e \\ & \mid & \texttt{let pair} \; (x, y) = e_1 \; \texttt{in} \; e_2 \\ v & ::= & \cdots \mid (v_1, v_2) \end{array}$$

Types for Pairs

• Types for pair expressions:

$$\tau ::= \cdots \mid \tau_1 \times \tau_2$$

let vs. fst and snd

 The fst and snd operations are definable in terms of let pair:

fst
$$e \iff$$
 let pair $(x, y) = e$ in x
snd $e \iff$ let pair $(x, y) = e$ in y

• Actually, the let pair construct is definable in terms of let, fst, snd too:

$$ext{let pair}(x,y) = e ext{ in } e_2 \ \iff ext{let } p = e ext{ in } e_2[ext{fst } p/x, ext{snd } p/y]$$

 We typically just use the (simpler) fst and snd constructs and treat let pair as syntactic sugar.

More generally: tuples and records

• Nothing stops us from adding triples, quadruples, ..., *n*-tuples.

$$(1,2,3)$$
 (true, 2, 3, $\lambda x.(x,x)$)

• As mentioned earlier, many languages prefer *named* record syntax:

(a:1,b:2,c:3) $(b:true, n_1:2, n_2:3, f:\lambda x.(x,x))$

- (cf. class fields in Java, structs in C, etc.)
- These are undeniably useful, but are definable using pairs.
- We'll revisit named record-style constructs when we consider classes and modules.

Special case: the "unit" type

• Nothing stops us from adding a type of *O-tuples*: a data structure with no data. This is often called the *unit type*, or unit.

$$e ::= \cdots | ()$$

 $v ::= \cdots | ()$
 $\tau ::= \cdots | unit$

$$() \Downarrow () \qquad \overline{\Gamma \vdash ()} : \texttt{unit}$$

- this may seem a little pointless: why bother to define a type with no (interesting) data and no operations?
- This is analogous to void in C/Java; in Haskell and Scala it is called ().

Motivation for variant types

- Pairs allow us to combine two data structures (a τ_1 and a τ_2).
- What if we want a data structure that allows us to *choose* between different options?
- We've already seen one example: booleans.
 - A boolean can be one of two values.
 - Given a boolean, we can look at its value and choose among two options, using if then else.
- Can we generalize this idea?

Another example: null values

- Sometimes we want to produe *either* a regular value *or* a special "null" value.
- Some languages, including SQL and Java, allow many types to have null values by default.
 - This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
 - Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 "simply because it was so easy to implement"!
 - he now calls them "the billion dollar mistake": http://www.infoq.com/presentations/↔ Null-References-The-Billion↔ -Dollar-Mistake-Tony-Hoare

Another problem with Null

Questions Tags Users Badges Unanswered Ask Question

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

How do I correctly pass the string "Null" (an employee's proper surname) to a SOAP web service from ActionScript 3?

A 3508	We have an employee whose last name is Null. Our employee lookup application is killed when that last name is used as the search term (which happens to be quite often now). The error received (thanks Fiddler!) is:	asked 4 years ago viewed 766478 times
★ 763	<pre><soapenv:fault></soapenv:fault></pre>	Featured on Meta
	Cute, huh? The parameter type is string.	The Power of Teams: A Proposed Expansion of Star Overflow

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What would be better?

Г

• Consider an option type:

$$\begin{array}{rcl} e & ::= & \cdots \mid \texttt{none} \mid \texttt{some}(e) \\ \tau & ::= & \cdots \mid \texttt{option}[\tau] \end{array}$$
$$\begin{array}{rcl} & & & \\ \hline \vdash \texttt{none}:\texttt{option}[\tau] & & & \\ \hline \Gamma \vdash \texttt{some}(e):\texttt{option}[\tau] \end{array}$$

- Then we can use none to indicate absence of a value, and some(e) to give the present value.
- Morover, the *type* of an expression tells us whether null values are possible.

Error codes

- The option type is useful but still a little limited: we either get a τ value, or nothing
- If none means failure, we might want to get some more information about why the failure occurred.
- We would like to be able to return an error code
 - In older languages, notably C, special values are often used for errors
 - Example: read reads from a file, and either returns number of bytes read, or -1 representing an error
 - The actual error code is passed via a global variable
 - It's easy to forget to check this result, and the function's return value can't be used to return data.
 - Other languages use *exceptions*, which we'll cover much later

The OK-or-error type

- Suppose we want to return *either* a normal value τ_{ok} or an error value τ_{err}.
- Let's write okOrErr[τ_{ok}, τ_{err}] for this type.

$$e ::= \cdots | \operatorname{ok}(e) | \operatorname{err}(e)$$

 $\tau ::= \cdots | \operatorname{okOrErr}[\tau_1, \tau_2]$

- Basic idea:
 - if e has type τ_{ok} , then ok(e) has type $okOrErr[\tau_{ok}, \tau_{err}]$
 - if e has type τ_{err} , then err(e) has type okOrErr[τ_{ok}, τ_{err}]

How do we use okOrErr[τ_{ok}, τ_{err}]?

- When we talked about option[τ], we didn't really say how to use the results.
- If we have a okOrErr[τ_{ok}, τ_{err}] value v, then we want to be able to *branch* on its value:
 - If v is ok(v_{ok}), then we probably want to get at v_{ok} and use it to proceed with the computation
 - If v is err(v_{err}), then we probably want to get at v_{err} to report the error and stop the computation.
- In other words, we want to perform *case analysis* on the value, and extract the wrapped value for further processing

Case analysis

• We consider a case analysis construct as follows:

$$ext{case } e ext{ of } \{ ext{ok}(x) \Rightarrow e_{ok} ext{ ; } ext{err}(y) \Rightarrow e_{err} \}$$

- This is a generalized conditional: "If e evaluates to ok(v_{ok}), then evaluate e_{ok} with v_{ok} replacing x, else it evaluates to err(v_{err}) so evaluate e_{err} with v_{err} replacing y."
- Here, x is bound in e_{ok} and y is bound in e_{err}
- This construct should be familiar by now from Scala:

e match { case Ok(x) => e1
 case Err(x) => e2
} // note slightly different syntax

Variant types, more generally

- Notice that the ok and err cases are completely symmetric
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let's rename and generalize the notation:

$$\begin{array}{rcl} e & ::= & \cdots \mid \texttt{left}(e) \mid \texttt{right}(e) \\ & \mid & \texttt{case } e \texttt{ of } \{\texttt{left}(x) \Rightarrow e_1 \texttt{ ; right}(y) \Rightarrow e_2 \} \\ v & ::= & \cdots \mid \texttt{left}(v) \mid \texttt{right}(v) \\ \tau & ::= & \cdots \mid \tau_1 + \tau_2 \end{array}$$

We will call type τ₁ + τ₂ a variant type (sometimes also called sum or disjoint union)

Types for variants

• We extend the typing rules as follows:

$$\begin{array}{c} \hline \Gamma \vdash \tau \\ \hline r \vdash e: \tau_1 \\ \hline \Gamma \vdash \operatorname{left}(e): \tau_1 + \tau_2 \end{array} & \begin{array}{c} \Gamma \vdash e: \tau_2 \\ \hline \Gamma \vdash \operatorname{right}(e): \tau_1 + \tau_2 \end{array} \\ \hline \hline \Gamma \vdash \operatorname{right}(e): \tau_1 + \tau_2 \\ \hline \Gamma \vdash e: \tau_1 + \tau_2 \quad \Gamma, x: \tau_1 \vdash e_1: \tau \quad \Gamma, y: \tau_2 \vdash e_2: \tau \\ \hline \Gamma \vdash \operatorname{case} e \text{ of } \{\operatorname{left}(x) \Rightarrow e_1 ; \operatorname{right}(y) \Rightarrow e_2\}: \tau \end{array}$$

- Idea: left and right "wrap" au_1 or au_2 as $au_1 + au_2$
- Idea: Case is like conditional, only we can use the wrapped value extracted from left(v) or right(v).

Semantics of variants

• We extend the evaluation rules as follows:

- Creating a $\tau_1 + \tau_2$ value is straightforward.
- Case analysis branches on the $\tau_1 + \tau_2$ value

Defining Booleans and option types

• The Boolean type bool can be defined as unit + unit

$$\texttt{true} \iff \texttt{left}() \qquad \texttt{false} \iff \texttt{right}()$$

Conditional is then defined as case analysis, ignoring the variables

 $\begin{array}{l} \text{if e then e_1 else e_2} \\ \iff \text{case e of } \{\texttt{left}(x) \Rightarrow e_1 \text{ ; } \texttt{right}(y) \Rightarrow e_2\} \end{array}$

• Likewise, the option type is definable as $\tau + \text{unit}$:

$$\texttt{some}(e) \iff \texttt{left}(e) \quad \texttt{none} \iff \texttt{right}()$$

Datatypes: named variants and case classes

- Programming directly with binary variants is awkward
- As for pairs, the τ₁ + τ₂ type can be generalized to *n*-ary choices or *named variants*
- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways
 - Haskell supports "datatypes" which give constructor names to the cases
 - In Java, can use classes and inheritance to simulate this, verbosely (Python similar)
 - Scala does not directly support named variant types, but provides "case classes" and pattern matching
 - We'll revisit case classes and variants later in discussion of object-oriented programming.

The empty type

• We can also consider the 0-ary variant type

$$\tau$$
 ::= ··· | empty

with no associated expressions or values

- Scala provides Nothing as a built-in type; most languages do not
 - [Perhaps confusingly, this is not the same thing at all as the void or unit type!]
- We will talk about Nothing again when we cover subtyping
 - (Insert *Seinfeld* joke here, if anyone is old enough to remember that.)

Summary

- Today we've covered two primitive types for structured data:
 - Pairs, which combine two or more data structures
 - Variants, which represent alternative choices among data structures
 - Special cases (unit, empty) and generalizations (records, datatypes)
- This is a pattern we'll see over and over:
 - Define a type and expressions for creating and using its elements
 - Define typing rules and evaluation rules
- Next time:
 - Polymorphism: Abstraction over types
 - Type inference