Pairs and Records Variants and Case Analysis

Elements of Programming Languages

Lecture 6: Data structures

James Cheney
University of Edinburgh

October 13, 2015



Pairs and Records Variants and Case Analysis

The story so far

@ We've now covered the main ingredients of any
programming language:

Abstract syntax

Semantics/interpretation

Types

Variables and binding

Functions and recursion

@ but only in the context of a very weak language: there are
no “data structures” (records, lists, variants), pointers,
side-effects etc.

@ Let alone even more advanced features such as classes,
interfaces, or generics

@ Over the next few lectures we will show how to add them,
consolidating understanding of the foundations along the
way.



Pairs and Records Variants and Case Analysis

Pairs

@ The simplest way to combine data structures: pairing
(1,2) (true, false) (1, (true, Ax:int.x + 2))
o If we have a pair, we can extract one of the components:
fst (1,2) ~ 1 snd (true, false) ~» false

snd (1, (true, Ax:int.x + 2)) ~» (true, Ax:int.x + 2)

e Finally, we can often pattern match against a pair, to
extract both components at once:

let pair (x,y) =(1,2) in (y, x) ~ (2,1)



Pairs and Records

Pairs in various languages

Variants and Case Analysis

Haskell Scala Java

(1,2 (1,2) new Pair(1,2)

fst e e. 1 e.getFirst()

snd e e. 2 e.getSecond ()
let (x,y) = |val (x,y) = N/A

e Functional languages typically have explicit syntax (and

types) for pairs

@ Java and C-like languages have “record”, “struct” or
“class” structures that accommodate multiple, named

fields.

e A pair type can be defined but is not built-in and there
is no support for pattern-matching



Pairs and Records Variants and Case Analysis

Syntax and Semantics of Pairs

@ Syntax of pair expressions and values:

e = ---|(e,e)|fst e|snde
| let pair (x,y) =€ in &

v o= | (v, v)

for pairs

eeldvi ellw el (vi,n) el (vi,n)

(e1,€) I (v, »2) fstelwn snd e | v

e | (vi, ) efvn/x,w/yllv
let pair (x,y) =€ in e | v




Pairs and Records Variants and Case Analysis

Types for Pairs

@ Types for pair expressions:

T = - |Tm X

[Fe:m ThHe :m
I_I—(el,eg):ﬁXTz

[Fe:m X7 [Fe:m X7
[Ffste:n [Fsnde:n

N-e:mxn x:m,y:mEe: T

[ let pair (x,y) =€ ine : 7T




Pairs and Records Variants and Case Analysis

let vs. fst and snd

@ The fst and snd operations are definable in terms of
let pair:

fst e <= let pair (x,y)=einx
snd e <= let pair (x,y)=einy

@ Actually, the let pair construct is definable in terms of
let, fst, snd too:

let pair (x,y) = e in e
<= let p=e in e[fst p/x,snd p/y]

e We typically just use the (simpler) fst and snd
constructs and treat let pair as syntactic sugar.



Pairs and Records Variants and Case Analysis

More generally: tuples and records

@ Nothing stops us from adding triples, quadruples, ...,
n-tuples.

(1,2,3) (true, 2,3, \x.(x, x))

@ As mentioned earlier, many languages prefer named
record syntax:

(a:1,b:2,¢c:3) (b:true,ny :2,ny:3,f: Ax.(x,x))

@ (cf. class fields in Java, structs in C, etc.)
@ These are undeniably useful, but are definable using pairs.

@ We'll revisit named record-style constructs when we
consider classes and modules.



Pairs and Records Variants and Case Analysis

Special case: the “unit” type

@ Nothing stops us from adding a type of O-tuples: a data
structure with no data. This is often called the unit type,
or unit.

e == ---|()
v o= ()

T = ---|unit

O40 M= () :unit
@ this may seem a little pointless: why bother to define a
type with no (interesting) data and no operations?

@ This is analogous to void in C/Java; in Haskell and Scala
it is called ).



Pairs and Records Variants and Case Analysis

Motivation for variant types

@ Pairs allow us to combine two data structures (a 73 and a
7).

e What if we want a data structure that allows us to
choose between different options?

@ We've already seen one example: booleans.

e A boolean can be one of two values.
e Given a boolean, we can look at its value and choose
among two options, using if then else .

@ Can we generalize this idea?



Pairs and Records Variants and Case Analysis

Another example: null values

@ Sometimes we want to produe either a regular value or a
special “null” value.

@ Some languages, including SQL and Java, allow many
types to have null values by default.

e This leads to the need for defensive programming to
avoid the dreaded NullPointerException in Java, or
strange query behavior in SQL

e Sir Tony Hoare (inventor of Quicksort) introduced null
references in Algol in 1965 “simply because it was so
easy to implement”!

o he now calls them “the billion dollar mistake™:
http://www.infoq.com/presentations/<
Null-References-The-Billion<—
-Dollar-Mistake-Tony-Hoare



Pairs and Records Variants and Case Analysis

Another problem with Null

-, stack overflow

How do | correctly pass the string “Null” (an employee's proper surname) to a SOAP web
service from ActionScript 37

A We have an employee whose last name is Null. Our employee lookup application is killed when

4 years ago
that last name is used as the search term (which happens to be quite often now). The error ; 766478 times
3508 received (thanks Fiddler)) is: R
active 1 month ago
v <soapenv:Fault>
<faultcode>soapenv:Server.userException</faultcode>
<faultstring>coldfusion.xml.rpc.CFCInvocationException: [coldfusion.runtime.MissingArgume
763 Featured on Meta

Cute, huh? & The Power of Teams: A
Proposed Expansion of Stack
The parameter type is string . Overflow



Pairs and Records Variants and Case Analysis

What would be better?

e Consider an option type:
= .- | none | some(e)
T u= ---|option[r]

[Fe:T
[+ none : option|7] I+ some(e) : option|[r]

@ Then we can use none to indicate absence of a value, and
some(e) to give the present value.

@ Morover, the type of an expression tells us whether null
values are possible.



Pairs and Records Variants and Case Analysis

Error codes

@ The option type is useful but still a little limited: we
either get a 7 value, or nothing

@ If none means failure, we might want to get some more
information about why the failure occurred.

@ We would like to be able to return an error code

e In older languages, notably C, special values are often
used for errors

o Example: read reads from a file, and either returns
number of bytes read, or -1 representing an error

e The actual error code is passed via a global variable

o It's easy to forget to check this result, and the function's
return value can't be used to return data.

o Other languages use exceptions, which we'll cover much
later



Pairs and Records Variants and Case Analysis

The OK-or-error type

@ Suppose we want to return either a normal value 7., or
an error value Te,.

@ Let's write okOrErr|7o4, Terr] for this type.

= - | ok(e) | err(e)

T u= ---| okOrErr|r, 7]

@ Basic idea:

o if e has type 7ok, then ok(e) has type okOrErr|7ok, Terr]
o if e has type T, then err(e) has type
OKOrETrT|Tok, Terr]



Pairs and Records Variants and Case Analysis

How do we use okOrErr|7ok, Ter|?

@ When we talked about option[7], we didn't really say
how to use the results.

@ If we have a okOrErr|Tok, Terr| value v, then we want to
be able to branch on its value:
o If v is ok(vyk), then we probably want to get at v, and
use it to proceed with the computation
o If v is err(ver), then we probably want to get at ve,, to
report the error and stop the computation.

@ In other words, we want to perform case analysis on the
value, and extract the wrapped value for further
processing



Pairs and Records Variants and Case Analysis

Case analysis

@ We consider a case analysis construct as follows:
case e of {ok(x) = ex ; err(y) = e}

@ This is a generalized conditional: “If e evaluates to
ok(Vvok), then evaluate e, with v, replacing x, else it
evaluates to err(ve,) so evaluate e, with v, replacing

y.
@ Here, x is bound in ey, and y is bound in e,

@ This construct should be familiar by now from Scala:

e match { case Ok(x) => el
case Err(x) => e2
} // note slightly different syntaz




Pairs and Records Variants and Case Analysis

Variant types, more generally

@ Notice that the ok and err cases are completely
symmetric

@ Generalizing this type might also be useful for other
situations than error handling...

@ Therefore, let's rename and generalize the notation:

e = ---|left(e) | right(e)

| case e of {left(x) = e ; right(y) = e}
v = ---|left(v) | right(v)
T ou= T4 m

e We will call type 71 + 72 a variant type (sometimes also
called sum or disjoint union)



Pairs and Records Variants and Case Analysis

Types for variants

@ We extend the typing rules as follows:

for variant types

rl_eZTl rl_eZTz
[ left(e) : 7+ 7 I right(e):m + 7
lFe:m+mn ximbe:7 Ny mbe:T
[ case e of {left(x) = e ; right(y) = e} : 7

@ Idea: left and right “wrap” 7 or 75 as 13 + T

@ ldea: Case is like conditional, only we can use the
wrapped value extracted from left(v) or right(v).



Pairs and Records Variants and Case Analysis

Semantics of variants

@ We extend the evaluation rules as follows:

for variant types

el v el v
left(e) | left(v) right(e) || right(v)

el left(vr) efw/x] v
case e of {left(x) = e ; right(y) = e} | v

e | right(wva) ew/y] v
case e of {left(x) = e ; right(y) = e} | v

e Creating a 71 + 7> value is straightforward.

@ Case analysis branches on the 7 + 7» value



Pairs and Records Variants and Case Analysis

Defining Booleans and option types

@ The Boolean type bool can be defined as unit + unit
true <= left() false <= right()

e Conditional is then defined as case analysis, ignoring the
variables

if e then ¢ else &
<= case e of {left(x) = e ; right(y) = e}

o Likewise, the option type is definable as 7 + unit:

some(e) <= left(e) none <= right()



Pairs and Records Variants and Case Analysis

Datatypes: named variants and case classes

@ Programming directly with binary variants is awkward

@ As for pairs, the 71 + 7, type can be generalized to n-ary
choices or named variants

@ As we saw in Lecture 1 with abstract syntax trees,
variants can be represented in different ways

o Haskell supports “datatypes” which give constructor
names to the cases

e In Java, can use classes and inheritance to simulate this,
verbosely (Python similar)

e Scala does not directly support named variant types, but
provides “case classes” and pattern matching

o We'll revisit case classes and variants later in discussion
of object-oriented programming.



Pairs and Records Variants and Case Analysis

The empty type

@ We can also consider the O-ary variant type
T = ---|empty

with no associated expressions or values
@ Scala provides Nothing as a built-in type; most languages
do not
o [Perhaps confusingly, this is not the same thing at all as
the void or unit typel!]
@ We will talk about Nothing again when we cover
subtyping
o (Insert Seinfeld joke here, if anyone is old enough to
remember that.)



Pairs and Records Variants and Case Analysis

Summary

@ Today we've covered two primitive types for structured
data:
e Pairs, which combine two or more data structures
e Variants, which represent alternative choices among data

structures
e Special cases (unit, empty) and generalizations (records,

datatypes)
@ This is a pattern we'll see over and over:
e Define a type and expressions for creating and using its
elements
e Define typing rules and evaluation rules
@ Next time:
e Polymorphism: Abstraction over types
e Type inference



	Pairs and Records
	Variants and Case Analysis

