
Pairs and Records Variants and Case Analysis

Elements of Programming Languages
Lecture 6: Data structures

James Cheney

University of Edinburgh

October 13, 2015

Pairs and Records Variants and Case Analysis

The story so far

We’ve now covered the main ingredients of any
programming language:

Abstract syntax
Semantics/interpretation
Types
Variables and binding
Functions and recursion

but only in the context of a very weak language: there are
no “data structures” (records, lists, variants), pointers,
side-effects etc.

Let alone even more advanced features such as classes,
interfaces, or generics

Over the next few lectures we will show how to add them,
consolidating understanding of the foundations along the
way.

Pairs and Records Variants and Case Analysis

Pairs

The simplest way to combine data structures: pairing

(1, 2) (true, false) (1, (true, λx :int.x + 2))

If we have a pair, we can extract one of the components:

fst (1, 2) 1 snd (true, false) false

snd (1, (true, λx :int.x + 2)) (true, λx :int.x + 2)

Finally, we can often pattern match against a pair, to
extract both components at once:

let pair (x , y) = (1, 2) in (y , x) (2, 1)

Pairs and Records Variants and Case Analysis

Pairs in various languages

Haskell Scala Java
(1,2) (1,2) new Pair(1,2)

fst e e. 1 e.getFirst()

snd e e. 2 e.getSecond()

let (x,y) = val (x,y) = N/A

Functional languages typically have explicit syntax (and
types) for pairs

Java and C-like languages have “record”, “struct” or
“class” structures that accommodate multiple, named
fields.

A pair type can be defined but is not built-in and there
is no support for pattern-matching

Pairs and Records Variants and Case Analysis

Syntax and Semantics of Pairs

Syntax of pair expressions and values:

e ::= · · · | (e1, e2) | fst e | snd e

| let pair (x , y) = e1 in e2

v ::= · · · | (v1, v2)

e ⇓ v for pairs

e1 ⇓ v1 e2 ⇓ v2
(e1, e2) ⇓ (v1, v2)

e ⇓ (v1, v2)

fst e ⇓ v1

e ⇓ (v1, v2)

snd e ⇓ v2

e1 ⇓ (v1, v2) e2[v1/x , v2/y] ⇓ v

let pair (x , y) = e1 in e2 ⇓ v

Pairs and Records Variants and Case Analysis

Types for Pairs

Types for pair expressions:

τ ::= · · · | τ1 × τ2

Γ ` e : τ for pairs

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2
Γ ` fst e : τ1

Γ ` e : τ1 × τ2
Γ ` snd e : τ2

Γ ` e1 : τ1 × τ2 Γ, x : τ1, y : τ2 ` e2 : τ

Γ ` let pair (x , y) = e1 in e2 : τ

Pairs and Records Variants and Case Analysis

let vs. fst and snd

The fst and snd operations are definable in terms of
let pair:

fst e ⇐⇒ let pair (x , y) = e in x

snd e ⇐⇒ let pair (x , y) = e in y

Actually, the let pair construct is definable in terms of
let, fst, snd too:

let pair (x , y) = e in e2
⇐⇒ let p = e in e2[fst p/x , snd p/y]

We typically just use the (simpler) fst and snd

constructs and treat let pair as syntactic sugar.

Pairs and Records Variants and Case Analysis

More generally: tuples and records

Nothing stops us from adding triples, quadruples, . . . ,
n-tuples.

(1, 2, 3) (true, 2, 3, λx .(x , x))

As mentioned earlier, many languages prefer named
record syntax:

(a : 1, b : 2, c : 3) (b : true, n1 : 2, n2 : 3, f : λx .(x , x))

(cf. class fields in Java, structs in C, etc.)

These are undeniably useful, but are definable using pairs.

We’ll revisit named record-style constructs when we
consider classes and modules.

Pairs and Records Variants and Case Analysis

Special case: the “unit” type

Nothing stops us from adding a type of 0-tuples: a data
structure with no data. This is often called the unit type,
or unit.

e ::= · · · | ()

v ::= · · · | ()

τ ::= · · · | unit

() ⇓ () Γ ` () : unit

this may seem a little pointless: why bother to define a
type with no (interesting) data and no operations?

This is analogous to void in C/Java; in Haskell and Scala
it is called ().

Pairs and Records Variants and Case Analysis

Motivation for variant types

Pairs allow us to combine two data structures (a τ1 and a
τ2).

What if we want a data structure that allows us to
choose between different options?

We’ve already seen one example: booleans.

A boolean can be one of two values.
Given a boolean, we can look at its value and choose
among two options, using if then else .

Can we generalize this idea?

Pairs and Records Variants and Case Analysis

Another example: null values

Sometimes we want to produe either a regular value or a
special “null” value.

Some languages, including SQL and Java, allow many
types to have null values by default.

This leads to the need for defensive programming to
avoid the dreaded NullPointerException in Java, or
strange query behavior in SQL
Sir Tony Hoare (inventor of Quicksort) introduced null
references in Algol in 1965 “simply because it was so
easy to implement”!
he now calls them “the billion dollar mistake”:
http://www.infoq.com/presentations/←↩
Null-References-The-Billion←↩
-Dollar-Mistake-Tony-Hoare

Pairs and Records Variants and Case Analysis

Another problem with Null

Pairs and Records Variants and Case Analysis

What would be better?

Consider an option type:

e ::= · · · | none | some(e)

τ ::= · · · | option[τ]

Γ ` none : option[τ]
Γ ` e : τ

Γ ` some(e) : option[τ]

Then we can use none to indicate absence of a value, and
some(e) to give the present value.

Morover, the type of an expression tells us whether null
values are possible.

Pairs and Records Variants and Case Analysis

Error codes

The option type is useful but still a little limited: we
either get a τ value, or nothing

If none means failure, we might want to get some more
information about why the failure occurred.

We would like to be able to return an error code

In older languages, notably C, special values are often
used for errors
Example: read reads from a file, and either returns
number of bytes read, or -1 representing an error
The actual error code is passed via a global variable
It’s easy to forget to check this result, and the function’s
return value can’t be used to return data.
Other languages use exceptions, which we’ll cover much
later

Pairs and Records Variants and Case Analysis

The OK-or-error type

Suppose we want to return either a normal value τok or
an error value τerr .

Let’s write okOrErr[τok , τerr] for this type.

e ::= · · · | ok(e) | err(e)

τ ::= · · · | okOrErr[τ1, τ2]

Basic idea:

if e has type τok , then ok(e) has type okOrErr[τok , τerr]
if e has type τerr , then err(e) has type
okOrErr[τok , τerr]

Pairs and Records Variants and Case Analysis

How do we use okOrErr[τok , τerr]?

When we talked about option[τ], we didn’t really say
how to use the results.

If we have a okOrErr[τok , τerr] value v , then we want to
be able to branch on its value:

If v is ok(vok), then we probably want to get at vok and
use it to proceed with the computation
If v is err(verr), then we probably want to get at verr to
report the error and stop the computation.

In other words, we want to perform case analysis on the
value, and extract the wrapped value for further
processing

Pairs and Records Variants and Case Analysis

Case analysis

We consider a case analysis construct as follows:

case e of {ok(x)⇒ eok ; err(y)⇒ eerr}

This is a generalized conditional: “If e evaluates to
ok(vok), then evaluate eok with vok replacing x , else it
evaluates to err(verr) so evaluate eerr with verr replacing
y .”

Here, x is bound in eok and y is bound in eerr

This construct should be familiar by now from Scala:

e match { case Ok(x) => e1

case Err(x) => e2

} // note slightly different syntax

Pairs and Records Variants and Case Analysis

Variant types, more generally

Notice that the ok and err cases are completely
symmetric

Generalizing this type might also be useful for other
situations than error handling...

Therefore, let’s rename and generalize the notation:

e ::= · · · | left(e) | right(e)

| case e of {left(x)⇒ e1 ; right(y)⇒ e2}
v ::= · · · | left(v) | right(v)

τ ::= · · · | τ1 + τ2

We will call type τ1 + τ2 a variant type (sometimes also
called sum or disjoint union)

Pairs and Records Variants and Case Analysis

Types for variants

We extend the typing rules as follows:

Γ ` τ for variant types

Γ ` e : τ1
Γ ` left(e) : τ1 + τ2

Γ ` e : τ2
Γ ` right(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ

Γ ` case e of {left(x)⇒ e1 ; right(y)⇒ e2} : τ

Idea: left and right “wrap” τ1 or τ2 as τ1 + τ2

Idea: Case is like conditional, only we can use the
wrapped value extracted from left(v) or right(v).

Pairs and Records Variants and Case Analysis

Semantics of variants

We extend the evaluation rules as follows:

e ⇓ v for variant types

e ⇓ v

left(e) ⇓ left(v)

e ⇓ v

right(e) ⇓ right(v)

e ⇓ left(v1) e1[v1/x] ⇓ v

case e of {left(x)⇒ e1 ; right(y)⇒ e2} ⇓ v

e ⇓ right(v2) e2[v2/y] ⇓ v

case e of {left(x)⇒ e1 ; right(y)⇒ e2} ⇓ v

Creating a τ1 + τ2 value is straightforward.

Case analysis branches on the τ1 + τ2 value

Pairs and Records Variants and Case Analysis

Defining Booleans and option types

The Boolean type bool can be defined as unit + unit

true ⇐⇒ left() false ⇐⇒ right()

Conditional is then defined as case analysis, ignoring the
variables

if e then e1 else e2
⇐⇒ case e of {left(x)⇒ e1 ; right(y)⇒ e2}

Likewise, the option type is definable as τ + unit:

some(e) ⇐⇒ left(e) none ⇐⇒ right()

Pairs and Records Variants and Case Analysis

Datatypes: named variants and case classes

Programming directly with binary variants is awkward

As for pairs, the τ1 + τ2 type can be generalized to n-ary
choices or named variants

As we saw in Lecture 1 with abstract syntax trees,
variants can be represented in different ways

Haskell supports “datatypes” which give constructor
names to the cases
In Java, can use classes and inheritance to simulate this,
verbosely (Python similar)
Scala does not directly support named variant types, but
provides “case classes” and pattern matching
We’ll revisit case classes and variants later in discussion
of object-oriented programming.

Pairs and Records Variants and Case Analysis

The empty type

We can also consider the 0-ary variant type

τ ::= · · · | empty

with no associated expressions or values

Scala provides Nothing as a built-in type; most languages
do not

[Perhaps confusingly, this is not the same thing at all as
the void or unit type!]

We will talk about Nothing again when we cover
subtyping

(Insert Seinfeld joke here, if anyone is old enough to
remember that.)

Pairs and Records Variants and Case Analysis

Summary

Today we’ve covered two primitive types for structured
data:

Pairs, which combine two or more data structures
Variants, which represent alternative choices among data
structures
Special cases (unit, empty) and generalizations (records,
datatypes)

This is a pattern we’ll see over and over:

Define a type and expressions for creating and using its
elements
Define typing rules and evaluation rules

Next time:

Polymorphism: Abstraction over types
Type inference

	Pairs and Records
	Variants and Case Analysis

