
Elements of Programming Languages
Lecture 5: Functions and recursion

James Cheney

University of Edinburgh

October 9, 2015

Overview

So far, we’ve covered

arithmetic
booleans, conditionals (if then else)
variables and simple binding (let)

LLet allows us to compute values of expressions

and use variables to store intermediate values

but not to define computations on unknown values.

That is, there is no feature analogous to Haskell’s
functions, Scala’s def, or methods in Java.

Today, we consider functions and recursion

Named functions

A simple way to add support for functions is as follows:

e ::= · · · | f (e) | let fun f (x : τ) = e1 in e2

Meaning: Define a function called f that takes an
argument x and whose result is the expression e1.

Make f available for use in e2.

(That is, the scope of x is e1, and the scope of f is e2.)

This is pretty limited:

for now, we consider one-argument functions only.
no recursion
functions are not first-class “values” (e.g. can’t pass a
function as an argument to another)

Examples

We can define a squaring function:

let fun square(x : int) = x × x in · · ·

or (assuming inequality tests) absolute value:

let fun abs(x : int) = if x < 0 then −x else x in · · ·

Types for named functions

We introduce a type constructor τ1 → τ2, meaning “the
type of functions taking arguments in τ1 and returning τ2”

We can typecheck named functions as follows:

Γ, x :τ1 ` e1 : τ2 Γ, f :τ1 → τ2 ` e2 : τ

Γ ` let fun f (x : τ1) = e1 in e2 : τ

Γ(f) = τ1 → τ2 Γ ` e : τ1
Γ ` f (e) : τ2

For convenience, we just use a single environment Γ for
both variables and function names.

Example

Typechecking of abs(−42)

Γ(x) = int

Γ ` x : int Γ ` 0 : int
Γ ` x < 0 : bool

Γ ` x : int
Γ ` −x : int

Γ(x) = int

Γ ` x : int
Γ ` if x < 0 then − x else x : int

...
Γ ` eabs : int

abs:int→ int ` −42 : int
abs:int→ int ` abs(−42) : int

` let fun abs(x : int) = eabs in abs(−42) : int

where Γ = x :int.

Semantics of named functions

We can define rules for evaluating named functions as
follows.

First, let δ be an environment mapping function names f
to their “definitions”, which we’ll write as 〈x ⇒ e〉.
When we encounter a function definition, add it to δ.

δ[f 7→ 〈x ⇒ e1〉], e2 ⇓ v

δ, let fun f (x : τ) = e1 in e2 ⇓ v

When we encounter an application, look up the definition
and evaluate the body with the argument value
substituted for the argument:

δ, e0 ⇓ v0 δ(f) = 〈x ⇒ e〉 δ, e[v0/x] ⇓ v

δ, f (e0) ⇓ v

Examples

Evaluation of abs(−42)

δ,−42 < 0 ⇓ true δ,−(−42) ⇓ 42

δ, if − 42 < 0 then − (−42) else − 42 ⇓ 42

δ,−42 ⇓ −42 δ(abs) = 〈x ⇒ eabs〉
...

δ, eabs [−42/x] ⇓ 42

δ, abs(−42) ⇓ 42

let fun abs(x : int) = eabs in abs(−42) ⇓ 42

where eabs = if x < 0 then − x else x and
δ = [abs 7→ 〈x ⇒ eabs〉]

Static vs. dynamic scope

What if we do this?

let x = 1 in

let fun f (y : int) = x + y in

let x = 10 in f (3)

Here, x is bound to 1 at the time f is defined, but
re-bound to 10 when by the time f is called.

There are two reasonable-seeming result values,
depending on which x is in scope:

Static scope uses the binding x = 1 present when f is
defined, so we get 1 + 3 = 4.
Dynamic scope uses the binding x = 10 present when f
is used, so we get 10 + 3 = 13.

Dynamic scope breaks type soundness

Even worse, what if we do this:

let x = 1 in

let fun f (y : int) = x + y in

let x = true in f (3)

When we typecheck f , x is an integer, but it is re-bound
to a boolean by the time f is called.

The program as a whole typechecks, but we get a
run-time error: dynamic scope makes the type system
unsound!

Early versions of LISP used dynamic scope, and it is
arguably useful in an untyped language.

Dynamic scope is now generally acknowledged as a
mistake — but one that naive language designers still
make.

Anonymous, first-class functions

In many languages (including Java as of version 8), we
can also write an expression for a function without a
name:

λx : τ. e

Here, λ (Greek letter lambda) introduces an anonymous
function expression in which x is bound in e.

(The λ-notation dates to Church’s higher-order logic
(1940); there are several competing stories about why he
chose λ.)

In Scala one writes: (x: Type) => e

In Java 8: x -> e (no type needed)

In Haskell: \x -> e or \x::Type -> e

The λ-calculus

Consider the following language:

e ::= x | e1 e2 | λx . e

i.e. we just have variables, function applications, and
lambda-abstractions.

Application e1 e2 applies a function term to an argument

This is called the (untyped) λ-calculus

It can serve as an expressive programming language /
computational model on its own.

(The course “Introduction to Theoretical Computer
Science” explores its use as a foundation for
computation.)

We will focus on the typed version.

Types for the λ-calculus

We define LLam to be LLet extended with typed
λ-abstraction and application as follows:

e ::= · · · | e1 e2 | λx :τ. e

τ ::= · · · | τ1 → τ2

τ1 → τ2 is (again) the type of functions from τ1 to τ2.

We can extend the typing rules as follows:

Γ ` e : τ for LLam

Γ, x :τ1 ` e : τ2
Γ ` λx :τ1. e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Evaluation for the λ-calculus

Values are extended to include λ-abstractions λx . e:

v ::= · · · | λx . e
(Note: We elide the type annotations when not needed.)
and the evaluation rules are extended as follows:

e ⇓ v for LLam

λx . e ⇓ λx . e
e1 ⇓ λx .e e2 ⇓ v2 e[v2/x] ⇓ v

e1 e2 ⇓ v

Note: Combined with let, this subsumes named
functions! We can just define let fun as “syntactic
sugar”

let fun f (x :τ) = e1 in e2 ⇐⇒ let f = λx :τ. e1 in e2

Examples

In LLam, we can define a higher-order function that calls
its argument twice:

let fun twice(f : τ → τ) = λx :τ. f (f (x)) in · · ·

and we can define the composition of two functions:

let compose = λf :τ2 → τ3. λg :τ1 → τ2. λx :τ1. f (g(x)) in · · ·

Notice we are using repeated λ-abstractions to handle
multiple arguments (compare with lab exercise)

Recursive functions

However, LLam still cannot express general recursion, e.g.
the factorial function:

let fun fact(n:int) =
if n == 0 then 1 else n × fact(n − 1) in · · ·

is not allowed because fact is not in scope inside the
function body.

We can’t write it directly as a λ-expression λx :τ. e either
because we don’t have a “name” for the function we’re
trying to define inside e.

Named recursive functions

In many languages, named function definitions are
recursive by default. (C, Python, Java, Haskell, Scala)

Others explicitly distinguish between nonrecursive and
recursive (named) function definitions. (Scheme, OCaml,
F#)

let f(x) = e // nonrecursive:

// only x is in scope in e

let rec f(x) = e // recursive:

// both f and x in scope in e

Note: In the untyped λ-calculus, let rec is definable
using a special λ-term called the Y combinator

Anonymous recursive functions

Inspired by LLam, we introduce a notation for anonymous
recursive functions:

e ::= · · · | rec f (x : τ1) : τ2. e

Idea: f is a local name for the function being defined, and
is in scope in e, along with the argument x .

We define LRec to be LLam extended with rec.

We can then define let rec as syntactic sugar:

let rec f (x :τ1) : τ2 = e1 in e2
⇐⇒ let f = rec f (x :τ1) : τ2. e1 in e2

Note: The outer f is in scope in e2, while the inner one is
in scope in e1. The two f bindings are unrelated.

Anonymous recursive functions: typing

The types of LRec are the same. We just add one rule:

Γ ` e : τ for LRec

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
Γ ` rec f (x :τ1) : τ2. e : τ1 → τ2

This says: to typecheck a recursive function,

bind f to the type τ1 → τ2 (so that we can call it as a
function in e),
bind x to the type τ1 (so that we can use it as an
argument in e),
typecheck e.

Since we use the same function type, the existing function
application rule is unchanged.

Anonymous recursive functions: semantics

Like a λ-term, a recursive function is a value:

v ::= · · · | rec f (x). e

We can evaluate recursive functions as follows:

e ⇓ v for LRec

rec f (x). e ⇓ rec f (x). e

e1 ⇓ rec f (x). e e2 ⇓ v2 e[rec f (x). e/f , v2/x] ⇓ v

e1 e2 ⇓ v

To apply a recursive function, we substitute the argument
for x and the whole rec expression for f .

Examples

We can now write, typecheck and run fact

(you will implement an evaluator for LRec in CW1, and
write other recursive functions)

In fact, LRec is Turing-complete (though it is still so
limited that it is not very useful as a general-purpose
language)

(Turing complete means: able to simulate any Turing
machine, that is, any computable function / any other
programming language. ITCS covers Turing completeness
and computability in depth.)

Mutual recursion

What if we want to define mutually recursive functions?

A simple example:

def even(n: Int) = if n == 0 then true else odd(n-1)

def odd(n: Int) = if n == 0 then false else even(n-1)

Perhaps surprisingly, we can’t easily do this!

One solution: generalize let rec:

let rec f1(x1:τ1) : τ ′1 = e1 and · · · and fn(xn:τn) : τ ′n = en
in e

where f1, . . . , fn are all in scope in bodies e1, . . . , en.

This gets messy fast; we’ll revisit this issue later.

Big-step vs. small-step

Recursion highlights some limitations of big-step
semantics

Specifically, it cannot easily distinguish between
nontermination

let rec f (x) = f (x + 1) in f (0)

and failure:
1 + true

(Nor is it helpful for computations that are intended to
run forever, perhaps performing side-effects along the
way.)

We will explore an alternative, small-step semantics in
future lectures

Summary

Today we have covered:

Named functions
Static vs. dynamic scope
Anonymous functions
Recursive functions

along with our first “composite” type, the function type
τ1 → τ2.

Next time

Data structures: Pairs (combination) and variants
(choice)

