
Variables and Substitution Scope and Binding Types Semantics

Elements of Programming Languages
Lecture 4: Variables, binding and substitution

James Cheney

University of Edinburgh

October 6, 2015

Variables and Substitution Scope and Binding Types Semantics

Variables

A variable is a symbol that can stand for another
expression.

Often written x , y , z ,

Let’s extend LArith with variables:

e ::= e1 + e2 | e1 × e2 | n | x ∈ Var

Here, x is shorthand for an arbitrary variable in Var , the
set of expression variables

Variables and Substitution Scope and Binding Types Semantics

Substitution

A variable can “stand for” another expression.

What does this mean precisely?

Suppose we have x + 1 and we want x to “stand for” 42.

We should be able to replace x everywhere in x + 1 with
42:

x + 1 42 + 1

Another example: if y “stands for” x + 1 then

x + y + 1 x + (x + 1) + 1

(Remember that we insert parentheses when necessary to
disambiguate in abstract syntax expressions.)

Variables and Substitution Scope and Binding Types Semantics

Substitution

Let’s introduce a notation for this substitution operation:

Definition (Substitution)

Given e1, x , e2, the substitution of e2 for x in e1 is an
expression written e1[e2/x].

For LArith with variables, define substitution as follows:

n[e/x] = n

x [e/x] = e

y [e/x] = y (x 6= y)

(e1 + e2)[e/x] = e1[e/x] + e2[e/x]

(e1 × e2)[e/x] = e1[e/x]× e2[e/x]

Variables and Substitution Scope and Binding Types Semantics

Scope

As we all know from programming, we can reuse variable
names:

def foo(x: Int) = x + 1

def bar(x: Int) = x * x

The occurrences of x in foo have nothing to do with
those in bar

Moreover the following code is equivalent (since y is not
already in use in foo or bar):

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

Variables and Substitution Scope and Binding Types Semantics

Scope

Definition (Scope)

The scope of a variable name is the collection of program
locations in which occurrences of the variable refer to the
same thing.

I am being a little casual here: “refer to the same thing”
doesn’t necessarily mean that the two variable
occurrences evaluate to the same value at run time.

For example, the variables could refer to a shared
reference cell whose value changes over time.

Variables and Substitution Scope and Binding Types Semantics

Scope, Binding and Bound Variables

Certain occurrences of variables are called binding

Again, consider

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

The occurrences of x and y on the left-hand side of the
definitions are binding

The other occurrences are called bound

Binding occurrences define scopes: two bound variables
are in the same scope if they are bound by the same
binding occurrence.

Variables and Substitution Scope and Binding Types Semantics

Dynamic vs. static scope

The terms static and dynamic scope are sometimes used.

In static scope, the scope and binding occurrences of all
variables can be determined from the program text,
without actually running the program.

In dynamic scope, this is not necessarily the case: the
scope of a variable can depend on the context in which it
is evaluated at run time.

We will have more to say about this later when we cover
functions

but for now, the short version is: Static scope good,
dynamic scope bad.

Variables and Substitution Scope and Binding Types Semantics

Simple scope: let-binding

For now, we consider a very basic form of scope:
let-binding.

e ::= · · · | x | let x = e1 in e2

We define LLet to be LIf extended with variables and let.

In an expression of the form let x = e1 in e2, we say
that x is bound in e2

Intuition: let-binding allows us to use a variable x as an
abbreviation for some other expression:

let x = 1 + 2 in 3× x 3× (1 + 2)

Variables and Substitution Scope and Binding Types Semantics

Free variables

The set of free variables of an expression is defined as:

FV (n) = ∅
FV (x) = {x}

FV (e1 ⊕ e2) = FV (e1) ∪ FV (e2)

FV (if e then e1 else e2) = FV (e) ∪ FV (e1) ∪ FV (e2)

FV (let x = e1 in e2) = FV (e1) ∪ (FV (e2)− {x})
where X −Y is the set of elements of X that are not in Y

{x , y , z} − {y} = {x , z}
(Recall that e1 ⊕ e2 is shorthand for several cases.)
Examples:

FV (x + y) = {x , y} FV (let x = y in x) = {y}
FV (let x = x + y in z) = {x , y , z}

Variables and Substitution Scope and Binding Types Semantics

Alpha-Equivalence

Two expressions that are equivalent “modulo consistent
renaming of bound variables” are called alpha-equivalent

For LLet we can define alpha-equivalence as follows:

Alpha-equivalence for LLet (e1 ≡α e2)

v ≡α v x ≡α x

e1 ≡α e ′1 e2 ≡α e ′2
e1 ⊕ e2 ≡α e ′1 ⊕ e ′2

· · ·
e1 ≡α e ′1 e2[z/x] ≡α e ′2[z/y] z /∈ FV (e2) ∪ FV (e ′2)

let x = e1 in e2 ≡α let y = e ′1 in e ′2

Structural equality except for let

For let, we compare the e1s and replace the bound
names with fresh names and compare the e2s

Variables and Substitution Scope and Binding Types Semantics

Alpha-equivalence: examples

To illustrate, here are some examples of equivalent terms:

x ≡α x (let x = y in x) ≡α (let z = y in z)

(let y = 1 in let x = 2 in x + y)
≡α (let w = 1 in let z = 2 in z + w)

and here are some inequivalent terms:

x 6≡α y (let x = y in x) 6≡α (let y = x in y)

(let y = 1 in let x = 2 in x + y)
6≡α (let y = 1 in let y = 2 in y + y)

Variables and Substitution Scope and Binding Types Semantics

Types and variables

Once we add variables to our language, how does that
affect typing?

Consider
let x = e1 in e2

When is this well-formed? What type does it have?

Consider a variable on its own: what type does it have?

Different occurrences of the same variable in
different scopes could have different types.

We need a way to keep track of the types of variables

Variables and Substitution Scope and Binding Types Semantics

Types for variables and let, informally

Suppose we have a way of keeping track of the types of
variables (say, some kind of map or table)

When we see a variable x , look up its type in the map.

When we see a let x = e1 in e2, find out the type of e1.
Add the information that x has type τ1 to the map, and
check e2 using the augmented map.

Note: The local information about x ’s type should not
persist beyond typechecking its scope e2.

Variables and Substitution Scope and Binding Types Semantics

Types for variables and let, informally

For example:
let x = 1 in x + 1

is well-formed: we know that x must be an int since it is
set equal to 1, and then x + 1 is well-formed because x is
an int and 1 is an int.

On the other hand,

let x = 1 in if x then 42 else 17

is not well-formed: we again know that x must be an int

while checking if x then 42 else 17, but then when we
check that the conditional’s test x is a bool, we find that
it is actually an int.

Variables and Substitution Scope and Binding Types Semantics

Type Environments

We write Γ to denote a type environment, or a finite map
from variable names to types, often written as follows:

Γ ::= x1 : τ1, . . . , xn : τn

In Scala, we can use the built-in type
ListMap[Variable,Type] for this.

Moreover, we write Γ(x) for the type of x according to Γ
and Γ, x : τ to indicate extending Γ with the mapping x
to τ .

Variables and Substitution Scope and Binding Types Semantics

Types for variables and let, formally

We now generalize the ideal of well-formedness:

Definition (Well-formedness in a context)

We write Γ ` e : τ to indicate that e is well-formed at type τ
(or just “has type τ”) in context Γ.

The rules for variables and let-binding are as follows:

Γ ` e : τ for LLet

Γ(x) = τ

Γ ` x : τ
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

Variables and Substitution Scope and Binding Types Semantics

Types for variables and let, formally

We also need to generalize the LIf rules to allow contexts:

Γ ` e : τ for LIf

Γ ` n : int
Γ ` e1 : τ1 Γ ` e2 : τ2 ⊕ : τ1 × τ2 → τ

Γ ` e1 ⊕ e2 : τ

Γ ` b : bool
Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ

This is straightforward: we just add Γ everywhere.

The previous rules are special cases where Γ is empty.

Variables and Substitution Scope and Binding Types Semantics

Examples, revisited

We can now typecheck as follows:

` 1 : int
x : int ` x : int x : int ` 1 : int

x : int ` x + 1 : int
` let x = 1 in x + 1 : int

On the other hand:

` 1 : int
x : int ` x : bool · · ·

x : int ` if x then 42 else 17 :??
` let x = 1 in if x then 42 else 17 :??

is not derivable because the judgment x : int ` x : bool isn’t.

Variables and Substitution Scope and Binding Types Semantics

Evaluation for let and variables

One approach: whenever we see let x = e1 in e2,
1 evaluate e1 to v1
2 replace x with v1 in e2 and evaluate that

e ⇓ v for LIf

e1 ⇓ v1 e2[v1/x] ⇓ v2
let x = e1 in e2 ⇓ v2

Note: We always substitute values for variables, and do
not need a rule for “evaluating” a variable

This evaluation strategy is called eager, strict, or (for
historical reasons) call-by-value

This is a design choice. We will revisit this choice (and
consider alternatives) later.

Variables and Substitution Scope and Binding Types Semantics

Substitution-based interpreter

type Variable = String

...

case class Var(x: Variable) extends Expr

case class Let(x: Variable, e1: Expr, e2: Expr)

extends Expr

...

def eval(e: Expr): Value = e match {

...

Let(x,e1,e2) =>

val v = eval e1

val e2’ = subst(e2,val2expr(v),x)

eval e2’

}

Note: No case for Var(x); need to convert Value to Expr

Variables and Substitution Scope and Binding Types Semantics

Substitution revisited

Consider the following two alpha-equivalent terms:

(let x = 1 in x + y) ≡α (let z = 1 in z + y)

Intuition: the choice of bound name x (or z) does not
matter, as long as we avoid other names

Now consider what happens if we substitute:

(let x = 1 in x + y)[x/y] = let x = 1 in x + x

But

(let z = 1 in z + y)[x/y] = let z = 1 in z + x

These are not alpha-equivalent!

Substituting for x under a binding of x leads to variable
capture

Variables and Substitution Scope and Binding Types Semantics

Capture-avoiding substitution

To fix this problem, substitution needs to avoid capture

For LLet, this works as follows:

(let y = e1 in e2)[e/x] = let y = e1[e/x] in e ′2

where e ′2 =

{
e2 (y = x)
e2[e/x] (y 6∈ FV (e))

Note: The above cases are non-exhaustive

But it is always safe to rename to a completely fresh
name z /∈ FV (e, e1, e2)

let y = e1 in e2 ≡α let z = e1 in e2[z/y]

so that the second case applies

Variables and Substitution Scope and Binding Types Semantics

Example, revisited

Now consider the example:

(let x = 1 in x + y)[x/y]

Neither case of capture-avoiding substitution for let
applies. But we can α-rename:

(let x = 1 in x +y)[x/y] ≡α (let w = 1 in w +y)[x/y]

Now the second case applies:

(let w = 1 in w + y)[x/y] = let w = 1 in w + x

Capture-avoiding substitution is partial on expressions,
but total and well-defined on alpha-equivalence classes of
expressions.

Variables and Substitution Scope and Binding Types Semantics

Alternative semantics: environments

Another common way to handle variables is to use an
environment

An environment σ is a partial function from variables to
values (e.g. a Scala ListMap[Variable,Value]).

We add σ as an argument to the evaluation judgment:

σ, e ⇓ v

σ, v ⇓ v
σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 + e2 ⇓ v1 +N v2

σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 × e2 ⇓ v1 ×N v2

· · ·
σ, e1 ⇓ v1 σ[x = v], e2 ⇓ v2
σ, let x = e1 in e2 ⇓ v2 σ, x ⇓ σ(x)

Coursework 1 asks you to implement such an interpreter.

Variables and Substitution Scope and Binding Types Semantics

Summary

Today we’ve covered:

Basics of variables, scope, and binding
Free variables, alpha-equivalence, and substitution
Let-binding and how it affects typing and semantics

Next time:

Functions and function types
Recursion

