Elements of Programming Languages

Lecture 3: Booleans, conditionals, and types

James Cheney

University of Edinburgh

October 2, 2015

Boolean expressions

- ullet So far we've considered only a trivial arithmetic language L_{Arith}
- Let's extend L_{Arith} with equality tests and Boolean true/false values:

$$e ::= \cdots \mid b \in \mathbb{B} \mid e_1 == e_2$$

- We write B for the set of Boolean values {true, false}
- Basic idea: $e_1 == e_2$ should evaluate to true if e_1 and e_2 have equal values, false otherwise

What use is this?

- Examples:
 - 2+2==4 should evaluate to true
 - $3 \times 3 + 4 \times 4 == 5 \times 5$ should evaluate to true
 - $3 \times 3 == 4 \times 7$ should evaluate to false
 - How about true == true? Or false == true?
- So far, there's not much we can do.
- We can evaluate a numerical expression for its value, or a Boolean equality expression to true or false
- We can't write an expression whose result depends on evaluating a comparison.
 - We lack an "if then else" (conditional) operation.
- We also can't "and", "or" or negate Boolean values.

Conditionals

• Let's also add an "if then else" operation:

$$e ::= \cdots \mid b \in \mathbb{B} \mid e_1 == e_2 \mid$$
 if e then e_1 else e_2

- We define L_{If} as the extension of L_{Arith} with booleans, equality and conditionals.
- Examples:
 - if true then 1 else 2 should evaluate to 1
 - if 1+1==2 then 3 else 4 should evaluate to 3
 - if true then false else true should evaluate to false
- Note that if e then e₁ else e₂ is the first expression that makes nontrivial "choices": whether to evaluate the first or second case.

Extending evaluation

 We consider the Boolean values true and false to be values:

$$v ::= n \in \mathbb{N} \mid b \in \mathbb{B}$$

and we add the following evaluation rules:

Extending the interpreter

To interpret L_{If}, we need new expression forms:

```
case class Bool(n: Boolean) extends Expr
case class Eq(e1: Expr, e2:Expr) extends Expr
case class IfThenElse(e: Expr, e1: Expr, e2: Expr)
  extends Expr
```

• and different types of values (not just Ints):

```
abstract class Value
case class NumV(n: Int) extends Value
case class BoolV(b: Boolean) extends Value
```

• (Technically, we could encode booleans as integers, but in general we will want to separate out the kinds of values.)

Extending the interpreter

```
// helpers
def add(v1: Value, v2: Value): Value =
      (v1, v2) match {
        case (NumV(v1), NumV(v2)) \Rightarrow NumV(v1 + v2)
      }
def mult(v1: Value, v2: Value): Value = ...
def eval(e: Expr): Value = e match {
  // Arithmetic
   case Num(n) => NumV(n)
   case Plus(e1,e2) => add(eval(e1),eval(e2))
   case Times(e1,e2) => mult(eval(e1),eval(e2))
   ...}
```

Extending the interpreter

```
// helper
def eq(v1: Value, v2: Value): Value = (v1,v2) match {
    case (NumV(n1), NumV(n2)) \Rightarrow BoolV(n1 == n2)
    case (BoolV(b1), BoolV(b2)) \Rightarrow BoolV(b1 == b2)
def eval(e: Expr): Value = e match {
  case Bool(b) => BoolV(b)
  case Eq(e1,e2) \Rightarrow eq(eval(e1), eval(e2))
  case IfThenElse(e,e1,e2) => eval(e) match {
    case BoolV(true) => eval(e1)
    case BoolV(false) => eval(e2)
```

Aside: Other Boolean operations

 We can add Boolean and, or and not operations as follows:

$$e ::= \cdots \mid e_1 \wedge e_2 \mid e_1 \vee e_2 \mid \neg(e)$$

with evaluation rules:

- where again, $\wedge_{\mathbb{B}}$ and $\vee_{\mathbb{B}}$ are the mathematical "and" and "or" operations
- These are definable in L_{If}, so we will leave them out to avoid clutter.

Aside: Shortcut operations

 Many languages (e.g. C, Java) offer shortcut versions of "and" and "or":

$$e ::= \cdots \mid e_1 \&\& e_2 \mid e_1 \mid \mid e_2$$

- e_1 && e_2 stops early if e_1 is false (since e_2 's value then doesn't matter).
- $e_1 \mid \mid e_2$ stops early if e_1 is true (since e_2 's value then doesn't matter).
- We can model their semantics using rules like this:

$$\begin{array}{lll} & \underbrace{e_1 \Downarrow \mathtt{false}}_{e_1 \&\& e_2 \Downarrow \mathtt{false}} & \underbrace{e_1 \Downarrow \mathtt{true}}_{e_1 \&\& e_2 \Downarrow v_2} \\ & \underbrace{e_1 \Downarrow \mathtt{true}}_{e_1 \parallel \mid e_2 \Downarrow \mathtt{true}} & \underbrace{e_1 \Downarrow \mathtt{false}}_{e_1 \parallel \mid e_2 \Downarrow v_2} \end{array}$$

What else can we do?

We can also do strange things like this:

$$e_1 = 1 + (2 == 3)$$

Or this:

$$e_2 =$$
if 1 then 2 else 3

What should these expressions evaluate to?

- There is no v such that $e_1 \Downarrow v$ or $e_2 \Downarrow v!$
 - the Totality property for LArith fails, for LIf!
- If we try to run the interpreter: we just get an error

One answer: Conversions

- In some languages (notably C, Java), there are built-in conversion rules
 - For example, "if an integer is needed and a boolean is available, convert true to 1 and false to 0"
 - Likewise, "if a boolean is needed and an integer is available, convert 0 to false and other values to true"
 - LISP family languages have a similar convention: if we need a Boolean value, nil stands for "false" and any other value is treated as "true"
- Conversion rules are convenient but can make programs less predictable
- We will avoid them for now, but consider principled ways of providing this convenience later on.

Another answer: Types

Should programs like:

$$1 + (2 == 3)$$
 if 1 then 2 else 3

even be allowed?

- Idea: use a type system to define a subset of "well-formed" programs
- Well-formed means (at least) that at run time:
 - arguments to arithmetic operations (and equality tests) should be numeric values
 - arguments to conditional tests should be Boolean values

Typing rules, informally: arithmetic

- Consider an expression e
 - If e = n, then e has type "integer"
 - If $e = e_1 + e_2$, then e_1 and e_2 must have type "integer". If so, e has type "integer" also, else error.
 - If $e = e_1 \times e_2$, then e_1 and e_2 must have type "integer". If so, e has type "integer" also, else error.

Typing rules, informally: booleans, equality and conditionals

- Consider an expression e
 - If e =true or false, then e has type "boolean"
 - If $e = e_1 == e_2$, then e_1 and e_2 must have **the same type**. If so, e has type "boolean", else error.
 - If e = if e₀ then e₁ else e₂, then e₀ must have type "boolean", and e₁ and e₂ must have the same type. If so, then e has the same type as e₁ and e₂, else error.
- Note 1: Equality arguments have the same (unknown) type.
- Note 2: Conditional branches have the same (unknown) type. This type determines the type of the whole conditional expression.

Concise notation for typing rules

 We can define the possible types using a BNF grammar, as follows:

$$Type \ni \tau ::= int \mid bool$$

For now, we will consider only two possible types, "integer" (int) and "boolean" (bool).

• We can also use *rules* to describe the types of expressions:

Definition (Typing judgment $\vdash e : \tau$)

We use the notation $\vdash e : \tau$ to say that e is a well-formed term of type τ (or "e has type τ ").

Typing rules, more formally: arithmetic

- If e = n, then e has type "integer"
- If $e=e_1+e_2$, then e_1 and e_2 must have type "integer". If so, e has type "integer" also, else error.
- If $e = e_1 \times e_2$, then e_1 and e_2 must have type "integer". If so, e has type "integer" also, else error.

$\frac{n \in \mathbb{N}}{\vdash n : \text{int}} \quad \frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{\vdash e_1 + e_2 : \text{int}}$ $\frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{\vdash e_1 \times e_2 : \text{int}}$

Typing rules, more formally: equality and conditionals

- We indicate that the types of subexpressions of == must be equal by using the same τ
- ullet Similarly, we indicate that the result of a conditional has the same type as the two branches using the same au for all three

Typing judgments: examples

Typing judgments: non-examples

But we also want some things **not** to typecheck:

$$\vdash$$
 1 == true : τ

 \vdash if 42 then e_1 else e_2 : τ

These judgements do not hold for any e_1, e_2, τ .

Fundamental property of typing

- The point of the typing judgment is to ensure soundness: if an expression is well-typed, then it evaluates "correctly"
- That is, evaluation is well-behaved on well-typed programs.

Theorem (Type soundness for L_{lf})

If \vdash e : τ then e \Downarrow v and \vdash v : τ .

 For a language like L_{If}, soundness is fairly easy to prove by induction on expressions. We'll present soundness for more realistic languages in detail later.

Static vs. dynamic typing

 Some languages proudly advertise that they are "static" or "dynamic"

Static typing:

- not all expressions are well-formed; some sensible programs are not allowed
- types can be used to catch errors, improve performance

• Dynamic typing:

- all expressions are well-formed; any program can be run
- type errors arise dynamically; higher overhead for tagging and checking
- These are rarely-realized extremes: most "statically" typed languages handle some errors dynamically
- In contrast, any "dynamically" typed language can be thought of as a statically typed one with just one type.

Aside: Operators, operators everywhere

• We have now considered several binary operators

$$+$$
 \times \wedge \vee \approx

- as well as a unary one (¬)
- It is tiresome to write their syntax, evaluation rules, and typing rules explicitly, every time we add to the language
- We will sometimes represent such operations using schematic syntax $e_1 \oplus e_2$ and rules:

- where $\oplus : \tau_1 \times \tau_2 \to \tau$ means that operator \oplus takes arguments τ_1, τ_2 and yields result of type τ
- (e.g. +: int \times int \rightarrow int, $==:\tau\times\tau\to$ bool)

Summary

- In this lecture we covered:
 - Boolean values, equality tests and conditionals
 - Extending the interpreter to handle them
 - Typing rules
- Next time:
 - Variables and let-binding
 - Substitution, environments and type contexts