Overview

Elements of Programming Languages
Lecture 2: Evaluation

James Cheney
University of Edinburgh
September 29, 2015

Values

Recall \(L_{\text{Arith}} \) expressions:

\[
\text{Expr} \ni e ::= e_1 + e_2 \mid e_1 \times e_2 \mid n \in \mathbb{N}
\]

- Some expressions, like 1, 2, 3, are special
- They have no remaining “computation” to do
- We call such expressions \textit{values}.
- We can define a BNF grammar rule for values:

\[
\text{Value} \ni v ::= n \in \mathbb{N}
\]

Evaluation, informally

- Last time:
 - Concrete vs. abstract syntax
 - Programming with abstract syntax trees
 - A taste of induction over expressions

- Today:
 - Evaluation
 - A simple interpreter
 - Modeling evaluation using rules

- Given an expression \(e \), what is its value?
 - If \(e = n \), a number, then it is already a value.
 - If \(e = e_1 + e_2 \), evaluate \(e_1 \) to \(v_1 \) and \(e_2 \) to \(v_2 \). Then add \(v_1 \) and \(v_2 \), the result is the value of \(e \).
 - If \(e = e_1 \times e_2 \), evaluate \(e_1 \) to \(v_1 \) and \(e_2 \) to \(v_2 \). Then multiply \(v_1 \) and \(v_2 \), the result is the value of \(e \).
Example

Evaluation, in Scala

1. If $e = n$, a number, then it is already a value.
2. If $e = e_1 + e_2$, evaluate e_1 to v_1 and e_2 to v_2. Then add v_1 and v_2, the result is the value of e.
3. If $e = e_1 \times e_2$, evaluate e_1 to v_1 and e_2 to v_2. Then multiply v_1 and v_2, the result is the value of e.

```scala
type Value = Int
def eval(e: Expr): Int = e match {
  case Num(n) => n
  case Plus(e1,e2) => eval(e1) + eval(e2)
  case Times(e1,e2) => eval(e1) * eval(e2)
}
```

Example

Expression evaluation, more formally

To specify and reason about evaluation, we use an evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v, we say v is the value of e if evaluating e results in v, and we write $e \Downarrow v$ to indicate this.

(A judgment is a relation between abstract syntax trees.)

Examples:

- $1 + 2 \Downarrow 3$
- $1 + 2 \times 3 \Downarrow 7$
- $(1 + 2) \times 3 \Downarrow 9$
Evaluation of Values

- A value is already evaluated. So, for any \(v \), we have \(v \downarrow v \).
- We can express the fact that \(v \downarrow v \) always holds (for any \(v \)) as follows:
 \[v \downarrow v \]
- This is a rule that says that \(v \) evaluates to \(v \) always (no preconditions).
- So, for example, we can derive:
 \[0 \downarrow 0 \quad 1 \downarrow 1 \quad \ldots \]

Evaluation of Addition

- How to evaluate expression \(e_1 + e_2 \)?
- Suppose we know that \(e_1 \downarrow v_1 \) and \(e_2 \downarrow v_2 \).
- Then the value of \(e_1 + e_2 \) is the number we get by adding numbers \(v_1 \) and \(v_2 \).
- We can express this as follows:
 \[e_1 \downarrow v_1 \quad e_2 \downarrow v_2 \]
 \[e_1 + e_2 \downarrow v_1 + N \cdot v_2 \]
- This is a rule that says that \(e_1 + e_2 \) evaluates to \(v_1 + N \cdot v_2 \) provided \(e_1 \) evaluates to \(v_1 \) and \(e_2 \) evaluates to \(v_2 \).
- Note that we write \(+_N \) for the mathematical function that adds two numbers, to avoid confusion with the abstract syntax tree \(v_1 + v_2 \).

Expression evaluation: Summary

- Multiplication can be handled exactly like addition.
- We will define the meaning of \(L_{\text{Arith}} \) expressions using the following rules:

 \[
 \begin{align*}
 e_1 &\downarrow v_1 \quad e_2 \downarrow v_2 \\
 v \downarrow v \\
 e_1 \times e_2 \downarrow v_1 \times N \cdot v_2 \\
 e_1 + e_2 \downarrow v_1 + N \cdot v_2
 \end{align*}
 \]

- This evaluation judgment is an example of big-step semantics (or natural semantics)
 - so-called because we evaluate the whole expression “in one step”

Examples

- We can use these rules to derive evaluation judgments for complex expressions:

 \[
 \begin{align*}
 1 \downarrow 1 \\
 2 \downarrow 2 \\
 1 \downarrow 1 \\
 2 + 3 \downarrow 6 \\
 1 \downarrow 1 \\
 2 \downarrow 2 \\
 (1 + 2) \downarrow 3 \\
 3 \downarrow 3 \\
 3 \downarrow 3 \\
 \end{align*}
 \]
- These figures are derivation trees showing how we can derive a conclusion from axioms.
- The rules govern how we can construct derivation trees.
 - A leaf node must match a rule with no preconditions.
 - Other nodes must match rules with preconditions.
 (Order matters.)
- Note that derivation trees “grow up” (root is at the bottom).
Totality and Structural induction

- Question: Given any expression e, does it evaluate to a value?
- To answer this question, we can use structural induction:

Induction on structure of expressions

Given a property P of expressions, if:

- $P(n)$ holds for every number $n \in \mathbb{N}$
- for any expressions e_1, e_2, if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 + e_2)$ also holds
- for any expressions e_1, e_2, if $P(e_1)$ and $P(e_2)$ holds then $P(e_1 \times e_2)$ also holds

Then $P(e)$ holds for all expressions e.

Proof by structural induction

- Let's illustrate with an example

Theorem

If e is an expression, then there exists $v \in \mathbb{N}$ such that $e \downarrow v$ holds.

Proof: Base case.

If $e = n$ then e is already a value. Take $v = n$, then we can derive

\[
e \downarrow n
\]

Proof: Inductive case 1.

If $e = e_1 + e_2$ then suppose $e_1 \downarrow v_1$ and $e_2 \downarrow v_2$ for some v_1, v_2. Then we can use the rule:

\[
e_1 \downarrow v_1 \quad e_2 \downarrow v_2
\]

\[
e_1 + e_2 \downarrow v_1 + v_2
\]

to conclude that there exists $v = v_1 + v_2$ such that $e \downarrow v$ holds.

Note that again it's important to distinguish $v_1 + v_2$ (the number) from $v_1 + v_2$ the expression.

Proof: Inductive case 2.

If $e = e_1 \times e_2$ then suppose $e_1 \downarrow v_1$ and $e_2 \downarrow v_2$ for some v_1, v_2. Then we can use the rule:

\[
e_1 \downarrow v_1 \quad e_2 \downarrow v_2
\]

\[
e_1 \times e_2 \downarrow v_1 \times v_2
\]

to conclude that there exists $v = v_1 \times v_2$ such that $e \downarrow v$ holds.

This case is basically identical to case 1 (modulo $+$ vs. \times).

From now on we will typically skip over such “essentially identical” cases (but it is important to really check them).
Uniqueness

We can also prove the uniqueness of the value of v by induction:

Theorem (Uniqueness of evaluation)

If $e \Downarrow v$ and $e \Downarrow v'$, then $v = v'$.

Base case.

If $e = n$ then since $n \Downarrow v$ and $n \Downarrow v'$ hold, the only way we could derive these judgments is for v, v' to both equal n.

Inductive case.

If $e = e_1 + e_2$ then the derivations must be of the form

\[
\begin{align*}
 e_1 \Downarrow v_1 & \quad e_2 \Downarrow v_2 \\
 e_1 + e_2 \Downarrow v_1 +_N v_2 &
\end{align*}
\]

By induction, $e_1 \Downarrow v_1$ and $e_1 \Downarrow v'_1$ implies $v_1 = v'_1$, and similarly for e_2 so $v_2 = v'_2$. Therefore $v_1 +_N v_2 = v'_1 +_N v'_2$.

- The proof for $e_1 \times e_2$ is similar.

Totality, uniqueness, and correctness

- The Scala interpreter code defined earlier says how to interpret a L_{Arith} expression as a *function*.
- The big-step rules, in contrast, specify the meaning of expressions as a *relation*.
- Nevertheless, *totality* and *uniqueness* guarantee that for each e there is a unique v such that $e \Downarrow v$.
- In fact, $v = \text{eval}(e)$, that is:

Theorem (Interpreter Correctness)

For any L_{Arith} expression e, we have $e \Downarrow v$ if and only if $v = \text{eval}(e)$.

- Proof: induction on e.

Summary

- In this lecture, we’ve covered:
 - A simple interpreter
 - Evaluation via rules
 - Totality and uniqueness (via structural induction)
 - all for the simple language L_{Arith}
- Next time:
 - Booleans, equality, conditionals
 - Types