Overview

- Last few lectures: abstractions and “programming in the large”
 - Polymorphism and subtyping
 - Modules/interfaces, objects/classes
 - Defining functional constructs in an object-oriented language
- For the remaining lectures we consider some cross-cutting considerations for programming language design.
- Today:
 - Finer-grained (small-step) evaluation
 - Type safety

Refresher

- In the first 6 lectures we covered:
 - Basic arithmetic (L_{Arith})
 - Conditionals and booleans (L_{If})
 - Variables and let-binding (L_{Let})
 - Functions and recursion (L_{Rec})
 - Data structures (L_{Data})
- formalized using big-step evaluation ($e \Downarrow v$) and type judgments ($\Gamma \vdash e : \tau$)
- and implemented using Scala interpreters (CW1)

Limitations of big-step semantics

- Big-step semantics is convenient, but also limited
- It says how to evaluate the “whole program” (expression) to its “final value”
- But what if there is no final value?
 - Expressions like $1 + \text{true}$ simply don’t evaluate
 - Nonterminating programs don’t evaluate either, but for a different reason!
- As we will see in later lectures, it is also difficult to deal with other features, like exceptions, using big-step semantics
We will now consider an alternative: small-step semantics

\[e \mapsto e' \]

which says how to evaluate an expression "one step at a time"

If \(e_0 \mapsto \cdots \mapsto e_n \) then we write \(e_0 \mapsto^* e_n \). (in particular, for \(n = 0 \) we have \(e_0 \mapsto^* e_0 \))

We want it to be the case that \(e \mapsto^* v \) if and only if \(e \Downarrow v \).

But \(\mapsto \) provides more detail about how this happens.

It also allows expressions to "go wrong" (get stuck before reaching a value)

Small-step semantics: L\textsubscript{Arith}

- If the first subexpression of \(\oplus \) can take a step, apply it
- If the first subexpression is a value and the second can take a step, apply it
- If both sides are values, perform the operation

Example:

\begin{align*}
1 + (2 \times 3) & \mapsto 1 + 6 \mapsto 7 \\
\end{align*}

Small-step semantics: L\textsubscript{If}

- If the conditional test is not a value, evaluate it one step
- Otherwise, evaluate the corresponding branch

Example:

\begin{align*}
\text{let } x = 1 + 1 \text{ in } x \times x & \mapsto (1 + 1) \times (1 + 1) \\
& \mapsto 2 \times (1 + 1) \\
& \mapsto 2 \times 2 \\
& \mapsto 4
\end{align*}

Small-step semantics: L\textsubscript{Let}

- If the expression \(e_1 \) is not yet a value, evaluate it one step
- Otherwise, substitute it and proceed

Example:

\begin{align*}
\text{let } x = 1 + 1 \text{ in } 2 \times (1 + 1) & \mapsto 2 \times 2 \\
& \mapsto 4
\end{align*}
Small-step semantics: \(L_{\text{Lam}} \)

\[
\begin{align*}
\text{for } L_{\text{Lam}} & \\
\frac{e_1 \mapsto e'_1}{e_1 e_2 \mapsto e'_1 e_2} & \\
\frac{e_2 \mapsto e'_2}{v_1 e_2 \mapsto v_1 e'_2} & \\
(\lambda x. e) v & \mapsto e[v/\!x] & \text{if both function and argument are values, substitute and proceed}
\end{align*}
\]

- If the function part is not a value, evaluate it one step
- If the function is a value and the argument isn’t, evaluate it one step
- If both function and argument are values, substitute and proceed

\[
\begin{align*}
((\lambda x. \lambda y. x + y) 1) 2 & \mapsto (\lambda y. 1 + y) 2 \\
& \mapsto 1 + 2 \mapsto 3
\end{align*}
\]

Small-step semantics: \(L_{\text{Rec}} \)

\[
\text{for } L_{\text{Rec}}
\]

\[
\frac{(\text{rec } f(x). e) v \mapsto e[\text{rec } f(x). e/f, v/x]}{}
\]

- Same rules for evaluation inside application
- Note that we need to substitute \(\text{rec } f(x). e \) for \(f \).
- Suppose \(\text{fact} \) is the factorial function:

\[
\begin{align*}
fact 2 & \mapsto \text{if } 2 == 0 \text{ then } 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
& \mapsto \text{if false then } 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
& \mapsto 2 \times \text{fact}(2 - 1) \mapsto 2 \times \text{fact}(1) \\
& \mapsto 2 \times (\text{if } 1 == 0 \text{ then } 1 \text{ else } 1 \times \text{fact}(1 - 1)) \\
& \mapsto 2 \times (\text{if false then } 1 \text{ else } 1 \times \text{fact}(1 - 1)) \\
& \mapsto 2 \times (1 \times \text{fact}(1 - 1)) \mapsto 2 \times (1 \times \text{fact}(0)) \\
& \mapsto^* 2 \times (1 \times 1) \mapsto 2 \times 1 \mapsto 2
\end{align*}
\]

Judgments and Rules, in general

- A judgment is a relation among one or more abstract syntax trees.
- Examples so far: \(e \Downarrow v, \Gamma \vdash e : \tau, e \mapsto e' \)
- We have been defining judgments using rules of the form:

\[
\begin{align*}
Q & \quad P_1 \ldots P_n \\
\hline
\end{align*}
\]

where \(P_1, \ldots, P_n \) and \(Q \) are judgments.

Meaning of Rules

- A rule of the form:

\[
\overline{Q}
\]

is called an axiom. It says that \(Q \) is always derivable.
- A rule of the form

\[
\frac{P_1 \ldots P_n}{Q}
\]

says that judgment \(Q \) is derivable if \(P_1, \ldots, P_n \) are derivable.
- Symbols like \(e, v, \tau \) in rules stand for arbitrary expressions, values, or types.
- (If you are taking Logic Programming: These rules are a lot like Prolog clauses!)
Rule induction

Induction on derivations of $e \downarrow v$

Suppose $P(\cdot, \cdot)$ is a predicate over pairs of expressions and values. If:

- $P(v, v)$ holds for all values v
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 + e_2, v_1 + N v_2)$
- If $P(e_1, v_1)$ and $P(e_2, v_2)$ then $P(e_1 \times e_2, v_1 \times N v_2)$

then $e \downarrow v$ implies $P(e, v)$.

- Rule induction can be derived from mathematical induction on the size (or height) of the derivation tree.
 - (Much like structural induction.)
- We won’t formally prove this.

Example: $e \downarrow v$ implies $e \mapsto^{*} v$

Inductive case.

If the derivation is of the form

$e_1 \downarrow v_2 \quad e_2 \downarrow v_2$

$e_1 + e_2 \downarrow v_1 + N v_2$

then by induction, we know $e_1 \mapsto^{*} v_1$ and $e_2 \mapsto^{*} v_2$. Using the small-step rules, we can then show

$e_1 + e_2 \mapsto^{*} v_1 + e_2 \mapsto^{*} v_1 + v_2 \mapsto v_1 + N v_2$

- The case for \times is similar.

Type soundness

- The central property of a type system is soundness.
- Roughly speaking, soundness means “well-typed programs don’t go wrong” [Milner].
- But what exactly does “go wrong” mean?
 - For large-step: hard to say
 - For small-step: “go wrong” means “stuck” expression e that is not a value and cannot take a step.
- We could show something like:

Theorem (Soundness)

If $\vdash e : \tau$ and $e \mapsto^{*} v$ then $\vdash v : \tau$.

- This says that if an expression evaluates to a value, then the value has the right type.
Type soundness revisited

- We can decompose soundness into two parts:

Lemma (Progress)

\[
\text{If } \vdash e : \tau \text{ then either } e \text{ is a value or for some } e' \text{ we have } e \mapsto e'.
\]

Lemma (Preservation)

\[
\text{If } \vdash e : \tau \text{ and } e \mapsto e' \text{ then } \vdash e' : \tau.
\]

- Combining these two, can show:

Theorem (Soundness)

\[
\text{If } \vdash e : \tau \text{ and } e \mapsto \ast v \text{ then } \vdash v : \tau.
\]

- We will sketch these properties for \(L_{if}\) (leaving out a lot of formal detail)

Progress for \(L_{if}\)

Progress is proved by induction on \(\vdash e : \tau\) derivations. We show some representative cases.

Progress for +.

\[
\begin{align*}
\vdash e_1 : \text{int} & \quad \vdash e_2 : \text{int} \\
\vdash e_1 + e_2 : \text{int}
\end{align*}
\]

If the derivation is of the above form, then by induction \(e_1\) is either a value or can take a step, and likewise for \(e_2\). There are three cases.

- If \(e_1 \mapsto e'_1\) then \(e_1 + e_2 \mapsto e'_1 + e_2\).
- If \(e_1\) is a value \(v_1\) and \(e_2 \mapsto e'_2\), then \(v_1 + e_2 \mapsto v_1 + e'_2\).
- If both \(e_1\) and \(e_2\) are values then they must both be numbers \(n_1, n_2 \in \mathbb{N}\), so \(e_1 + e_2 \mapsto n_1 + n_2\).

Preservation for \(L_{if}\)

Preservation is proved by induction on the structure of \(\vdash e : \tau\). We’ll consider some representative cases:

Preservation for +.

\[
\begin{align*}
\vdash e_1 : \text{int} & \quad \vdash e_2 : \text{int} \\
\vdash e_1 + e_2 : \text{int}
\end{align*}
\]

If the derivation is of the above form, there are three cases.

- If \(e_1 = v_1\) and \(v_1 + v_2 \mapsto v_1 + v_2\) then obviously \(\vdash v_1 + v_2 : \text{int}\).
- If \(e_1 + e_2 \mapsto e'_1 + e_2\) where \(e_1 \mapsto e'_1\), then since \(\vdash e_1 : \text{int}\), we have \(\vdash e'_1 : \text{int}\), so \(\vdash e'_1 + e_2 : \text{int}\) also.
- The case where \(e_1 = v_1\) and \(v_1 + e_2 \mapsto v_1 + e'_2\) is similar.
Preservation for \(L_{\text{If}} \)

If the derivation is of the form
\[
\vdash e : \text{bool} \quad \vdash e_1 : \tau \quad \vdash e_2 : \tau
\]
\[
\vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau
\]
then there are three cases:

1. If \(\text{if } e \text{ then } e_1 \text{ else } e_2 \mapsto \text{if } e' \text{ then } e_1 \text{ else } e_2 \) where \(e \mapsto e' \), then by induction we can show that \(\vdash e' : \text{bool} \) and \(\vdash \text{if } e' \text{ then } e_1 \text{ else } e_2 : \tau \).

2. If \(e = \text{true} \) then \(\text{if true then } e_1 \text{ else } e_2 \mapsto e_1 \), so we already know \(\vdash e_1 : \tau \).

3. The case for \(\text{if false then } e_1 \text{ else } e_2 \mapsto e_2 \) is similar.

Small-step semantics Judgments, Rules, and Induction Type soundness

Type soundness for \(L_{\text{Let}} \) [non-examinable]

- **Progress:** straightforward (a “let” can always take a step)
- **Preservation:** Suppose we have

\[
\vdash v_1 : \tau' \quad x : \tau' \vdash e_2 : \tau
\]
\[
\vdash \text{let } x = v_1 \text{ in } e_2 : \tau
\]

\[
\text{let } x = v_1 \text{ in } e_2 \mapsto e_2[v_1/x]
\]

We need to show that \(\vdash e_2[v_1/x] : \tau \)

- For this we need a substitution lemma

Lemma (Substitution)

\[\text{If } \Gamma, x : \tau' \vdash e : \tau \text{ and } \Gamma \vdash e' : \tau' \text{ then } \Gamma \vdash e'[e/x] : \tau \]

Type soundness for \(L_{\text{Rec}} \) [non-examinable]

- **Progress:** If an application term is well-formed:

\[
\vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \vdash e_2 : \tau_1
\]
\[
\vdash e_1 \ e_2 : \tau_2
\]

then by induction, \(e_1 \) is either a value or \(e_1 \mapsto e'_1 \) for some \(e'_1 \). If it is a value, it must be either a lambda-expression or a recursive function, so \(e_1 \ e_2 \) can take a step.

Otherwise, \(e_1 \ e_2 \mapsto e'_1 \ e_2 \).

- **Preservation:** Similar to let, using substitution lemma for the cases

\[
(\lambda x. \ e) \ v \mapsto e[v/x]
\]
\[
(\text{rec } f(x). \ e) \ v \mapsto e[\text{rec } f(x). \ e/f, v/x]
\]

Summary

- **Today we have presented**
 - Small-step evaluation: a finer-grained semantics
 - Induction on derivations
 - Type soundness (details for \(L_{\text{If}} \))
 - Sketch of type soundness for \(L_{\text{Rec}} \) [Non-examinable]

- **Deep breath:** No more proofs from now on.

- Remaining lectures cover cross-cutting language features, which often have subtle interactions with each other

- Next time: References