Empirical Methods in Natural Language Processing Lecture 19 Machine translation (VI): Factored Translation Models

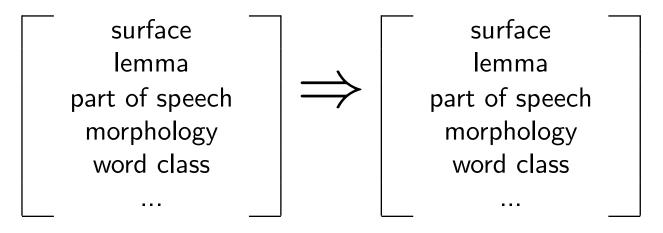
Philipp Koehn

10 March 2008 School of Informatics

Statistical machine translation today

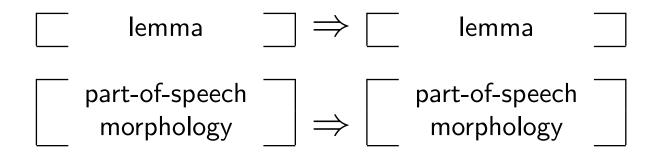
- Best performing methods based on *phrases*
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method
- Progress in *syntax-based* translation
 - tree transfer models using syntactic annotation
 - still no use of morphological information
 - slower, more complex, and lower translation quality
 - active research, closing the performance gap?

School of


Morphology for machine translation

- Models treat *car* and *cars* as completely different words
 - training occurrences of *car* have no effect on learning translation of *cars*
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) \rightarrow many word forms
- Better approach
 - analyze surface word forms into **lemma** and **morphology**, e.g.: *car* +*plural*
 - translate lemma and morphology separately
 - generate target surface form

Factored translation models


• Factored represention of words

- Goals
 - Generalization, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using syntax for reordering, language modeling)

Decomposing translation: example

• *Translate* lemma and syntactic information *separately*

nformatics

Decomposing translation: example

• *Generate surface* form on target side

Translation process

- Extension of phrase model
 - translation step is one-to-one mapping of word sequences
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors
 - generation step: maps English factors into English factors
- Order of mapping steps is chosen to optimize search

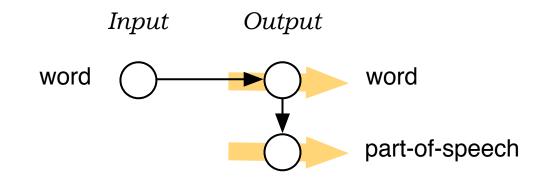
Translation process: example

Input: (Autos, Auto, NNS)

- 1. Translation step: lemma \Rightarrow lemma (?, car, ?), (?, auto, ?)
- Generation step: lemma ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- Generation step: lemma,part-of-speech ⇒ surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

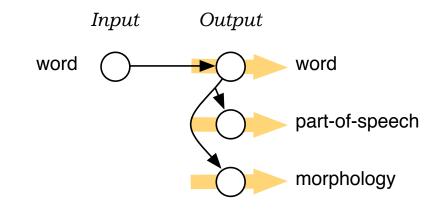
Integration with factored language models

- Factored language models: back-off to factors with richer statistics
 - if preceding word is rare, current word hard to predict
 - $\rightarrow\,$ back-off to part-of-speech tags
- Example
 - count(scotland is) = count(scotland fish) = count(scotland yellow) = 0
 - count(NNP is) > count(NNP fish) > count(NNP yellow)
- Gains shown for speech recognition and translation



Richer models for machine translation

- **Reordering** is often due to syntactic reasons
 - French-English: $NN ADJ \rightarrow ADJ NN$
 - Chinese-English: NN1 F NN2 \rightarrow NN1 NN2
 - Arabic-English: $VB NN \rightarrow NN VB$
- **Syntactic coherence** may be modeled using syntactic tags
 - n-gram models of *part-of-speech tags* may aid grammaticality of output
 - sequence models over *morphological tags* may aid agreement (e.g., case, number, and gender agreement in noun phrases)


Adding linguistic markup to output

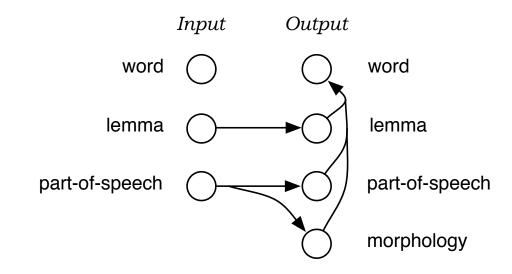
- High order language models over POS
- Motivation: syntactic tags should enforce syntactic sentence structure
- Results: No major impact with 7-gram POS model
- Analysis: local grammatical coherence already fairly good, POS sequence LM model not strong enough to support major restructuring

11 informatics

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - DET-sgl NOUN-sgl good sequence
 - DET-sgl NOUN-plural bad sequence

Agreement within noun phrases

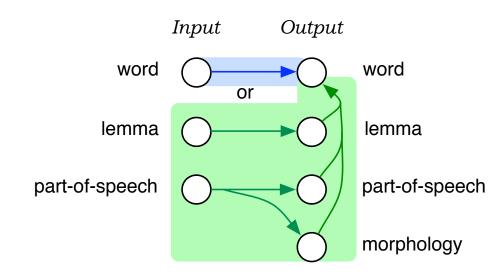

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

Method	Agreement errors in NP	devtest	test
baseline	15% in NP \geq 3 words	18.22 BLEU	18.04 BLEU
factored model	4% in NP \geq 3 words	18.25 BLEU	18.22 BLEU

- Example
 - baseline: ... zur zwischenstaatlichen methoden ...
 - factored model: ... zu zwischenstaatlichen methoden ...
- Example
 - baseline: ... *das zweite wichtige änderung* ...
 - factored model: ... die zweite wichtige änderung ...

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust


Initial results

• Results on 1 million word News Commentary corpus (German–English)

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - $\rightarrow~$ loss of information

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off

nformation

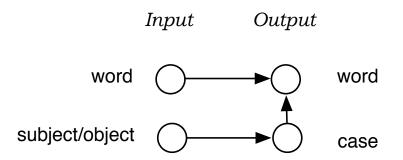
15

ICS

Results

• Model now beats the baseline:

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65
Both model paths	19.47	15.23



Adding annotation to the source

- Source words may contain insufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?
- Idea: add additional information to the source that makes the required information available locally (where it is needed)

Case information for English–German

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of German
- Use case morphology to generate correct word form

Factored models: open questions

- What is the *best decomposition* into translation and generation steps?
- Same segmentation for all translation steps?
- What information is useful?
 - translation: mostly lexical, or lemmas for richer statistics
 - reordering: syntactic information useful
 - language model: syntactic information for overall grammatical coherence
- Use of annotation tools vs. *automatically discovered* word classes
- *Other decoding steps* besides phrase translation and word generation?