Empirical Methods in Natural Language Processing Lecture 19 Machine translation (VI): Factored Translation Models

Philipp Koehn

Philipp Koehn EMNLP Lecture 19 10 March 2008

Statistical machine translation today

- Best performing methods based on *phrases*
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method
- Progress in *syntax-based* translation
 - tree transfer models using syntactic annotation
 - still no use of morphological information
 - slower, more complex, and lower translation quality
 - active research, closing the performance gap?

Morphology for machine translation

- Models treat car and cars as completely different words
 - training occurrences of car have no effect on learning translation of cars
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) → many word forms
- Better approach
 - analyze surface word forms into lemma and morphology, e.g.: car +plural
 - translate lemma and morphology separately
 - generate target surface form

Philipp Koehn EMNLP Lecture 19 10 March 2008

Factored translation models

Factored represention of words

- Goals
 - **Generalization**, e.g. by translating lemmas, not surface forms
 - Richer model, e.g. using syntax for reordering, language modeling)

Decomposing translation: example

	Transl	ate	lemma	and	syntactic	information	separatel	y
--	--------	-----	-------	-----	-----------	-------------	-----------	---

Philipp Koehn EMNLP Lecture 19 10 March 2008

Decomposing translation: example

• Generate surface form on target side

surface

the lemma part-of-speech morphology

Translation process

- Extension of phrase model
 - translation step is one-to-one mapping of word sequences
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors
 - generation step: maps English factors into English factors
- Order of mapping steps is chosen to optimize search

Philipp Koehn EMNLP Lecture 19 10 March 2008

Translation process: example

Input: (Autos, Auto, NNS)

- 1. Translation step: lemma ⇒ lemma (?, car, ?), (?, auto, ?)
- 2. Generation step: lemma ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)
- 3. Translation step: part-of-speech ⇒ part-of-speech (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)
- 4. Generation step: lemma,part-of-speech ⇒ surface (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)

Integration with factored language models

- Factored language models: back-off to factors with richer statistics
 - if preceding word is rare, current word hard to predict
 - → back-off to part-of-speech tags
- Example
 - count(scotland is) = count(scotland fish) = count(scotland yellow) = 0
 - count(NNP is) > count(NNP fish) > count(NNP yellow)
- Gains shown for speech recognition and translation

Philipp Koehn EMNLP Lecture 19 10 March 2008

Richer models for machine translation

- Reordering is often due to syntactic reasons
 - French-English: NN ADJ → ADJ NN
 - Chinese-English: NN1 F NN2 → NN1 NN2
 - Arabic-English: VB NN → NN VB
- Syntactic coherence may be modeled using syntactic tags
 - n-gram models of part-of-speech tags may aid grammaticality of output
 - sequence models over morphological tags may aid agreement (e.g., case, number, and gender agreement in noun phrases)

Adding linguistic markup to output

- High order language models over POS
- Motivation: syntactic tags should enforce syntactic sentence structure
- Results: No major impact with 7-gram POS model
- Analysis: local grammatical coherence already fairly good, POS sequence LM model not strong enough to support major restructuring

Philipp Koehn EMNLP Lecture 19 10 March 2008

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - DET-sgl NOUN-sgl good sequence
 - DET-sgl NOUN-plural bad sequence

Agreement within noun phrases

• Experiment: 7-gram POS, morph LM in addition to 3-gram word LM

Results

Method	Agreement errors in NP	devtest	test
baseline	15% in NP \geq 3 words	18.22 BLEU	18.04 BLEU
factored model	4% in NP \geq 3 words	18.25 BLEU	18.22 BLEU

Example

- baseline: ... zur zwischenstaatlichen methoden ...

- factored model: ... zu zwischenstaatlichen methoden ...

• Example

- baseline: ... das zweite wichtige änderung ...

- factored model: ... die zweite wichtige änderung ...

Philipp Koehn EMNLP Lecture 19 10 March 2008

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust

Initial results

• Results on 1 million word News Commentary corpus (German–English)

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 - \rightarrow loss of information

Philipp Koehn EMNLP Lecture 19 10 March 2008

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off

Results

• Model now beats the baseline:

System	In-doman	Out-of-domain
Baseline	18.19	15.01
With POS LM	19.05	15.03
Morphgen model	14.38	11.65
Both model paths	19.47	15.23

Philipp Koehn EMNLP Lecture 19 10 March 2008

Adding annotation to the source

- Source words may contain insufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?
- Idea: add additional information to the source that makes the required information available locally (where it is needed)

Case information for English-German

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of German
- Use case morphology to generate correct word form

Philipp Koehn EMNLP Lecture 19 10 March 2008

Factored models: open questions

- What is the best decomposition into translation and generation steps?
- Same segmentation for all translation steps?
- What information is useful?
 - translation: mostly lexical, or lemmas for richer statistics
 - reordering: syntactic information useful
 - language model: syntactic information for overall grammatical coherence
- Use of annotation tools vs. *automatically discovered* word classes
- Other decoding steps besides phrase translation and word generation?