Empirical Methods in Natural Language Processing Lecture 18 Machine translation (V): Syntax-Based Models

Philipp Koehn & Adam Lopez

6 March 2008

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Phrase-based SMT

- Already works pretty well.
- Are there any problems that we need to solve here?

Phrase-based SMT

- Computational: computing all possible reorderings is NP-complete.
- Linguistic: language is not finite-state.

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Syntax-based SMT

- What's going on here? A whole lot of things...
- Chiang (2005) makes a distinction between *formally* syntax-based and *linguistically* syntax-based.

		formally syntax-based
	phrase-based	hierarchical phrase-based
		[Chiang 2005]
linguistically	reordering + phrase-based	syntax-based SCFG
syntax-based	[Collins et al. 2005]	[Yamada & Knight 2002]

Linguistic Advantages of Syntax-Based Translation

- Generalized reordering for syntactic reasons
 - e.g., move German object to end of sentence
- Better explanation for function words
 - e.g., prepositions, determiners
- Conditioning to syntactically related words
 - translation of verb may depend on subject or object
- Use of syntactic language models
 - ensuring grammatical output

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Clause Level Restructuring [Collins et al.]

		formally syntax-based
	phrase-based	hierarchical phrase-based
		[Chiang 2005]
linguistically	reordering + phrase-based	syntax-based SCFG
syntax-based	[Collins et al. 2005]	[Yamada & Knight 2002]

Clause Level Restructuring [Collins et al.]

- Why clause structure?
 - languages differ vastly in their clause structure
 (English: SVO, Arabic: VSO, German: fairly free order;
 a lot details differ: position of adverbs, sub clauses, etc.)
 - large-scale restructuring is a *problem* for phrase models

Restructuring

- reordering of constituents (main focus)
- add/drop/change of function words
- Details see [Collins, Kucerova and Koehn, ACL 2005]

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Clause Structure

```
PPER-SB
         Ich
                   will
VAFIN-HD werde
VP-OC
         PPER-DA Ihnen
                          you
                                                                   MAIN
         NP-OA
                          die
                                the
                                                                  CLAUSE
                  ADJ-NK
                          {\tt entsprechenden}
                                             corresponding
                  NN-NK
                          Anmerkungen
                                        comments
         VVFTN
                  aushaendigen
                                    pass on
         $,
S-MO
                  KOUS-CP damit
                                  so that
                  PPER-SB Sie
                          Sie you
PDS-OA das
                                                                    SUB-
                          ADJD-MO eventuell
                                                perhaps
                          PP-MO
                                   APRD-MO bei
                                                                 ORDINATE
                                   ART-DA
                                            der
                                                  the
                                                                  CLAUSE
                                   NN-NK
                                            Abstimmung vote
                          VVINF
                                   uebernehmen
                                                  include
                  VMFIN
                          koennen
                                    can
```

- Syntax tree from German parser
 - statistical parser by Amit Dubay, trained on TIGER treebank

Reordering When Translating

- Reordering when translating into English
 - tree is *flattened*
 - clause level constituents line up

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Clause Level Reordering

```
PPER-SB
              Ich
                                          2
                                            will
     VAFIN-HD werde
                                            you
     PPER-DA
              Thnen
                                            the
              ART-OA die
     NP-OA
                                             corresponding
              ADJ-NK
                       entsprechenden
              NN-NK
                       Anmerkungen
                                             comments
     VVFIN
              aushaendigen
                                            pass on
$,
S-MO KOUS-CP
                                            so that
              damit
                                          2
     PPER-SB
              Sie
                                            you
                                            that
     PDS-OA
              das
                                            perhaps
     ADJD-MO
              eventuell
              APRD-MO bei
                                            in
     PP-MO
               ART-DA
                                             the
              NN-NK
                        Abstimmung
                                             vote
                                            include
     VVTNF
              uebernehmen
                                            can
     VMFIN
              koennen
```

- Clause level reordering is a well defined task
 - label German constituents with their English order
 - done this for 300 sentences, two annotators, high agreement

Systematic Reordering German → English

- Many types of reorderings are systematic
 - move verb group together
 - subject verb object
 - move negation in front of verb
- ⇒ Write rules by hand
 - apply rules to test and training data
 - train standard phrase-based SMT system

System	BLEU
baseline system	25.2%
with manual rules	26.8%

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Improved Translations

- we must also this criticism should be taken seriously .
- \rightarrow we must also take this criticism seriously .
- i am with him that it is necessary, the institutional balance by means of a political revaluation of both the commission and the council to maintain.
- → i agree with him in this , that it is necessary to maintain the institutional balance by means of a political revaluation of both the commission and the council .
- thirdly, we believe that the principle of differentiation of negotiations note.
- → thirdly, we maintain the principle of differentiation of negotiations.
 - perhaps it would be a constructive dialog between the government and opposition parties, social representative a positive impetus in the right direction.
- → perhaps a constructive dialog between government and opposition parties and social representative could give a positive impetus in the right direction .

Other Linguistically Syntax-Based Approaches

- Reranking phrase-based SMT output with syntactic features
 - create n-best list with phrase-based system
 - POS tag and parse candidate translations
 - rerank with syntactic features
 - see [Koehn, 2003] and JHU Workshop [Och et al., 2003]
- Incorporate syntax into decoder [Tillman and Ney, 2003]
 - Add finite-state control structure to allow long-distance movement of verbs in German-English translation.

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Formal Advantages of Syntax-Based Translation

- Foundation in *well-understood* models from formal language theory (theoretical computer science).
 - Maybe they have some use after all
- Computational complexity is (in principle) just as much as we need to model linguistic phenomena, and no more.
 - Polynomial even with full reordering.
 - Caveat: no easy trick to speed it up as with phrase-based models.
- Apply advances made algorithms for statistical parsing.
 - Earley, CKY, etc.

Synchronous Context-Free Grammars

		formally syntax-based
	phrase-based	hierarchical phrase-based
		[Chiang 2005]
linguistically	reordering + phrase-based	syntax-based SCFG
syntax-based	[Collins et al. 2005]	[Yamada & Knight 2002]

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Synchronous Context-Free Grammars

- Finite-state transducers model *regular* language
- Regular tree transducers model *context-free* language
- Various guises of SCFG
 - Syntax-directed Transduction (Lewis and Stearns 1968)
 - Inversion Transduction Grammar (Wu 1995-1998)
 - Head Transducers (Alshawi et al. 2000)
 - Multitext Grammar (Melamed 2003)

Inversion Transduction Grammars

- Generation of both English and foreign trees [Wu, 1997]
- Rules (binary and unary)
 - $A \rightarrow A_1 A_2 || A_1 A_2$
 - $-A \to A_1 A_2 ||A_2 A_1||$
 - $-A \rightarrow e \| f$
 - $-A \rightarrow e \| *$
 - $-A \rightarrow * || f$
- ⇒ Common binary tree required
 - limits the complexity of reorderings polynomial in length, exponential in arity

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Syntax Trees

• English binary tree

Syntax Trees

• Spanish binary tree

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Syntax Trees

• Combined tree with reordering of Spanish

Chiang: Hierarchical Phrase-based Model

- Chiang [ACL, 2005] (best paper award!)
 - context free bi-grammar
 - one non-terminal symbol
 - right hand side of rule may include non-terminals and terminals
- Competitive with phrase-based models in 2005 DARPA/NIST evaluation

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Types of Rules

- Word translation
 - -X → maison \parallel house
- Phrasal translation
 - -X → daba una bofetada | slap
- Mixed non-terminal / terminal hierarchial phrases
 - **−** $X \rightarrow X_1$ bleue \parallel blue X_1
 - $X \rightarrow$ ne X_1 pas \parallel not X_1
 - $-X \rightarrow X_1 X_2 \parallel X_2 \text{ of } X_1$
- Technical rules
 - $S \rightarrow S_1 X_2 \parallel S_1 X_2$
 - $-S \rightarrow X_1 \parallel X_1$

Learning Hierarchical Rules

| **3**

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Learning Hierarchical Rules

 $X \to \mathsf{a} \ \mathsf{la} \ X \parallel \mathsf{the} \ X$

Details of Chiang's Model

- Too many rules
 - → *filtering* of rules necessary
- Efficient parse decoding possible
 - hypothesis stack for each span of foreign words
 - only one non-terminal → hypotheses comparable
 - length limit for spans that do not start at beginning
 - m-gram language model integration increases complexity by $O(n^{2m})$

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Language is not Context-Free!

- Maybe it's mildly context-sensitive?
 - Synchronous Tree-Adjoining Grammar [Shieber 1992, others]
 - Generalized Multitext Grammar [Melamed 2004]
- Various transducer formalisms [Knight & Graehl 2005] for overview.

Syntactic Language Model

		formally syntax-based
	phrase-based	hierarchical phrase-based
		(Chiang 2005)
linguistically	reordering + phrase-based	syntax-based SCFG
syntax-based	(Collins et al. 2005)	(Yamada & Knight 2002)

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Syntactic Language Model

- $\bullet \ \textit{Good syntax tree} \to \mathsf{good} \ \mathsf{English}$
- Allows for *long distance constraints*

• Left translation preferred by syntactic LM

String to Tree Translation

- Use of English syntax trees [Yamada and Knight, 2001]
 - exploit rich resources on the English side
 - obtained with statistical parser [Collins, 1997]
 - flattened tree to allow more reorderings
 - works well with syntactic language model

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Yamada and Knight [2001]

[from Yamada and Knight, 2001]

Reordering Table

Original Order	Reordering	p(reorder original)
PRP VB1 VB2	PRP VB1 VB2	0.074
PRP VB1 VB2	PRP VB2 VB1	0.723
PRP VB1 VB2	VB1 PRP VB2	0.061
PRP VB1 VB2	VB1 VB2 PRP	0.037
PRP VB1 VB2	VB2 PRP VB1	0.083
PRP VB1 VB2	VB2 VB1 PRP	0.021
VB TO	VB TO	0.107
VB TO	TO VB	0.893
TO NN	TO NN	0.251
TO NN	NN TO	0.749

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Decoding as Parsing

• Chart Parsing

kare ha ongaku wo kiku no ga daisuki desu

- Pick Japanese words
- Translate into *tree stumps*

Decoding as Parsing

• Chart Parsing

- Pick Japanese words
- Translate into tree stumps

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Decoding as Parsing

• Adding some *more entries...*

Decoding as Parsing

• Combine entries

Philipp Koehn & Adam Lopez EMNLP Lecture 18 6 March 2008

Decoding as Parsing

Decoding as Parsing

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Decoding as Parsing

• Finished when all foreign words covered

Yamada and Knight: Training

- Parsing of the English side
 - using Collins statistical parser
- EM training
 - translation model is used to map training sentence pairs
 - EM training finds low-perplexity model
 - → unity of training and decoding as in IBM models

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Is the Model Realistic?

- Do English trees *match* foreign strings?
- Crossings between French-English [Fox, 2002]
 - 0.29-6.27 per sentence, depending on how it is measured
- Can be reduced by
 - flattening tree, as done by [Yamada and Knight, 2001]
 - detecting *phrasal* translation
 - special treatment for small number of constructions
- Most coherence between dependency structures

Other Syntax-Based Approaches

- ISI: extending work of Yamada/Knight
 - more complex rules
 - performance approaching phrase-based
- Prague: Translation via dependency structures
 - parallel Czech-English dependency treebank
 - tecto-grammatical translation model [EACL 2003]
- U.Alberta/Microsoft: treelet translation
 - translating from English into foreign languages
 - using dependency parser in English
 - project *dependency tree* into foreign language for training
 - map parts of the dependency tree ("treelets") into foreign languages

Philipp Koehn & Adam Lopez

EMNLP Lecture 18

6 March 2008

Syntax: Does it help?

- Getting there
 - for some languages competitive with best phrase-based systems
- Some evidence
 - work on reordering German
 - ISI: better for short sentences Chinese–English
 - automatically trained tree transfer systems promising
- Why not yet?
 - if real syntax, we need good parsers are they good enough?
 - syntactic annotations add a level of complexity
 - ightarrow difficult to handle, slow to train and decode
 - few researchers good at statistical modeling and syntactic theories