Phrase-based SMT

- Already works pretty well.

- Are there any problems that we need to solve here?

```
p=1 Mary did not give
give
did not
p=0.534
p=0.164
p=0.092
Joe did not give
p=0.092
```
Phrase-based SMT

- Computational: computing all possible reorderings is NP-complete.
- Linguistic: language is not finite-state.

Syntax-based SMT

- What’s going on here? A whole lot of things...
- Chiang (2005) makes a distinction between formally syntax-based and linguistically syntax-based.

<table>
<thead>
<tr>
<th></th>
<th>phrase-based</th>
<th>formally syntax-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hierarchical phrase-based</td>
<td>[Chiang 2005]</td>
</tr>
<tr>
<td>linguistically</td>
<td>reordering + phrase-based</td>
<td>syntax-based SCFG</td>
</tr>
<tr>
<td>syntax-based</td>
<td>[Collins et al. 2005]</td>
<td>[Yamada & Knight 2002]</td>
</tr>
</tbody>
</table>
Linguistic Advantages of Syntax-Based Translation

- *Generalized* reordering for syntactic reasons
 - e.g., move German object to end of sentence

- Better explanation for *function words*
 - e.g., prepositions, determiners

- Conditioning to *syntactically related words*
 - translation of verb may depend on subject or object

- Use of *syntactic language models*
 - ensuring grammatical output

Clause Level Restructuring [Collins et al.]

<table>
<thead>
<tr>
<th></th>
<th>phrase-based</th>
<th>formally syntax-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>linguistically syntax-based</td>
<td>reordering + phrase-based [Collins et al. 2005]</td>
<td>hierarchical phrase-based [Chiang 2005]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>syntax-based SCFG [Yamada & Knight 2002]</td>
</tr>
</tbody>
</table>
Clause Level Restructuring [Collins et al.]

• Why clause structure?
 – languages differ vastly in their clause structure
 (English: SVO, Arabic: VSO, German: fairly free order;
 a lot details differ: position of adverbs, sub clauses, etc.)
 – large-scale restructuring is a problem for phrase models

• Restructuring
 – reordering of constituents (main focus)
 – add/drop/change of function words

• Details see [Collins, Kucerova and Koehn, ACL 2005]

Clause Structure

• Syntax tree from German parser
 – statistical parser by Amit Dubay, trained on TIGER treebank
Reordering When Translating

- **Reordering** when translating into English
 - tree is flattened
 - clause level constituents line up

Clause Level Reordering

- Clause level reordering is a *well defined task*
 - label German constituents with their *English order*
 - done this for 300 sentences, two annotators, high agreement
Systematic Reordering German \rightarrow English

- Many types of reorderings are systematic
 - move verb group together
 - subject - verb - object
 - move negation in front of verb

\Rightarrow Write rules by hand
 - apply rules to test and training data
 - train standard phrase-based SMT system

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline system</td>
<td>25.2%</td>
</tr>
<tr>
<td>with manual rules</td>
<td>26.8%</td>
</tr>
</tbody>
</table>

Improved Translations

- we must also this criticism should be taken seriously.
 \Rightarrow we must also take this criticism seriously.

- i am with him that it is necessary, the institutional balance by means of a political revaluation of both the commission and the council to maintain.
 \Rightarrow i agree with him in this, that it is necessary to maintain the institutional balance by means of a political revaluation of both the commission and the council.

- thirdly, we believe that the principle of differentiation of negotiations note.
 \Rightarrow thirdly, we maintain the principle of differentiation of negotiations.

- perhaps it would be a constructive dialog between the government and opposition parties, social representative a positive impetus in the right direction.
 \Rightarrow perhaps a constructive dialog between government and opposition parties and social representative could give a positive impetus in the right direction.
Other Linguistically Syntax-Based Approaches

• **Reranking** phrase-based SMT output with syntactic features
 – create n-best list with phrase-based system
 – POS tag and parse candidate translations
 – rerank with syntactic features
 – see [Koehn, 2003] and JHU Workshop [Och et al., 2003]

• Incorporate syntax into decoder [Tillman and Ney, 2003]
 – Add finite-state control structure to allow long-distance movement of verbs in German-English translation.

Formal Advantages of Syntax-Based Translation

• Foundation in well-understood models from formal language theory (theoretical computer science).
 – Maybe they have some use after all

• **Computational complexity** is (in principle) just as much as we need to model linguistic phenomena, and no more.
 – Polynomial even with full reordering.
 – Caveat: no easy trick to speed it up as with phrase-based models.

• **Apply advances** made algorithms for statistical parsing.
 – Earley, CKY, etc.
Synchronous Context-Free Grammars

<table>
<thead>
<tr>
<th>formally syntax-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>phrase-based</td>
</tr>
<tr>
<td>hierarchal phrase-based</td>
</tr>
<tr>
<td>[Chiang 2005]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>linguistically</th>
</tr>
</thead>
<tbody>
<tr>
<td>syntax-based</td>
</tr>
<tr>
<td>reordering + phrase-based</td>
</tr>
<tr>
<td>[Collins et al. 2005]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>syntax-based SCFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yamada & Knight 2002]</td>
</tr>
</tbody>
</table>

Synchronous Context-Free Grammars

- Finite-state transducers model *regular* language
- Regular tree transducers model *context-free* language
- Various guises of SCFG
 - Syntax-directed Transduction (Lewis and Stearns 1968)
 - Inversion Transduction Grammar (Wu 1995-1998)
 - Head Transducers (Alshawi et al. 2000)
 - Multitext Grammar (Melamed 2003)
Inversion Transduction Grammars

- Generation of both English and foreign trees [Wu, 1997]

- Rules (binary and unary)
 - \(A \rightarrow A_1A_2\|A_1A_2 \)
 - \(A \rightarrow A_1A_2\|A_2A_1 \)
 - \(A \rightarrow e\|f \)
 - \(A \rightarrow e\|* \)
 - \(A \rightarrow *\|f \)

\(\Rightarrow \) Common binary tree required
 - limits the complexity of reorderings – polynomial in length, exponential in arity

Syntax Trees

- English binary tree
Syntax Trees

• Spanish binary tree

• Combined tree with reordering of Spanish
Chiang: Hierarchical Phrase-based Model

- **Chiang** [ACL, 2005] (best paper award!)
 - context free bi-grammar
 - *one non-terminal* symbol
 - right hand side of rule may include non-terminals and terminals

- *Competitive* with phrase-based models in 2005 DARPA/NIST evaluation

Types of Rules

- **Word** translation
 - $X \rightarrow \text{maison} \parallel \text{house}$

- **Phrasal** translation
 - $X \rightarrow \text{daba una bofetada} \mid \text{slap}$

- Mixed non-terminal / terminal – *hierarchical phrases*
 - $X \rightarrow X_1 \text{ bleue} \parallel \text{blue } X_1$
 - $X \rightarrow \text{ne } X_1 \text{ pas} \parallel \text{not } X_1$
 - $X \rightarrow X_1 X_2 \parallel X_2 \text{ of } X_1$

- **Technical rules**
 - $S \rightarrow S_1 X_2 \parallel S_1 X_2$
 - $S \rightarrow X_1 \parallel X_1$
Learning Hierarchical Rules

X → X verde || green X

X → a la X || the X
Details of Chiang’s Model

• Too many rules
 → filtering of rules necessary

• Efficient parse decoding possible
 – hypothesis stack for each span of foreign words
 – only one non-terminal → hypotheses comparable
 – length limit for spans that do not start at beginning
 – m-gram language model integration increases complexity by $O(n^{2m})$

Language is not Context-Free!

• Maybe it’s mildly context-sensitive?
 – Synchronous Tree-Adjoining Grammar [Shieber 1992, others]
 – Generalized Multitext Grammar [Melamed 2004]

• Various transducer formalisms – [Knight & Graehl 2005] for overview.
Syntactic Language Model

<table>
<thead>
<tr>
<th></th>
<th>formally syntax-based</th>
<th>phrase-based</th>
<th>hierarchical phrase-based (Chiang 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>linguistically syntax-based</td>
<td>reordering + phrase-based (Collins et al. 2005)</td>
<td>syntax-based SCFG (Yamada & Knight 2002)</td>
<td></td>
</tr>
</tbody>
</table>

- Good syntax tree → good English
- Allows for long distance constraints
- Left translation preferred by syntactic LM
String to Tree Translation

- Use of English syntax trees [Yamada and Knight, 2001]
 - exploit rich resources on the English side
 - obtained with statistical parser [Collins, 1997]
 - flattened tree to allow more reorderings
 - works well with syntactic language model

Yamada and Knight [2001]

Kare ha ongaku wo kiku no ga daisuki desu

[from Yamada and Knight, 2001]
Reordering Table

| Original Order | Reordering | p(reorder|original) |
|----------------|--------------------|-------------|
| PRP VB1 VB2 | PRP VB1 VB2 | 0.074 |
| PRP VB1 VB2 | PRP VB2 VB1 | 0.723 |
| PRP VB1 VB2 | VB1 PRP VB2 | 0.061 |
| PRP VB1 VB2 | VB1 VB2 PRP | 0.037 |
| PRP VB1 VB2 | VB2 PRP VB1 | 0.083 |
| PRP VB1 VB2 | VB2 VB1 PRP | 0.021 |
| VB TO | VB TO | 0.107 |
| VB TO | TO VB | 0.893 |
| TO NN | TO NN | 0.251 |
| TO NN | NN TO | 0.749 |

Decoding as Parsing

- **Chart Parsing**

 ![Chart Parsing Example](chart.png)

 kare ha ongaku wo kiku no ga daisuki desu

- **Pick Japanese *words***

- **Translate into *tree stumps***
Decoding as Parsing

• Chart Parsing

```
PRP
he

NN
music

TO
to
```
kare ha ongaku wo kiku no ga daisuki desu

• Pick Japanese words

• Translate into tree stumps

Decoding as Parsing

```
PRP
he

NN
music

TO
to

PP
```
kare ha ongaku wo kiku no ga daisuki desu

• Adding some *more entries*...
Decoding as Parsing

kare ha ongaku wo kiku no ga daisuki desu

- Combine entries
Decoding as Parsing

- Finished when all foreign words covered
Yamada and Knight: Training

- **Parsing** of the English side
 - using Collins statistical parser

- **EM training**
 - translation model is used to map training sentence pairs
 - EM training finds low-perplexity model
 - *unity of training and decoding* as in IBM models

Is the Model Realistic?

- Do English trees *match* foreign strings?

- Crossings between French-English [Fox, 2002]
 - 0.29-6.27 per sentence, depending on how it is measured

- Can be reduced by
 - *flattening tree*, as done by [Yamada and Knight, 2001]
 - detecting *phrasal* translation
 - *special treatment* for small number of constructions

- Most coherence between *dependency structures*
Other Syntax-Based Approaches

- ISI: extending work of Yamada/Knight
 - more complex rules
 - performance approaching phrase-based

- Prague: Translation via dependency structures
 - parallel Czech–English dependency treebank
 - tecto-grammatical translation model [EACL 2003]

- U.Alberta/Microsoft: treelet translation
 - translating from English into foreign languages
 - using dependency parser in English
 - project dependency tree into foreign language for training
 - map parts of the dependency tree (“treelets”) into foreign languages

Syntax: Does it help?

- Getting there
 - for some languages competitive with best phrase-based systems

- Some evidence
 - work on reordering German
 - ISI: better for short sentences Chinese–English
 - automatically trained tree transfer systems promising

- Why not yet?
 - if real syntax, we need good parsers — are they good enough?
 - syntactic annotations add a level of complexity
 → difficult to handle, slow to train and decode
 - few researchers good at statistical modeling and syntactic theories