Data Intensive Linguistics
Lecture 17
Machine translation (IV): Phrase-Based Models

Philipp Koehn
3 March 2008
Word alignment

- Notion of **word alignment** valuable

- Shared task at NAACL 2003 and ACL 2005 workshops
Word alignment with IBM models

- IBM Models create a *many-to-one* mapping
 - words are aligned using an **alignment function**
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (*no many-to-one* mapping)

- But we need *many-to-many* mappings
Symmetrizing word alignments

- **Intersection** of GIZA++ bidirectional alignments
Symmetrizing word alignments

<table>
<thead>
<tr>
<th>Maria no daba una</th>
<th>bofetada</th>
<th>la</th>
<th>bruja verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>did</td>
<td>not</td>
<td>slap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>witch</td>
</tr>
</tbody>
</table>

- *Grow* additional alignment points [Och and Ney, CompLing2003]
Growing heuristic

GROW-DIAG-LAST\text{(e\textsubscript{2f},f\textsubscript{2e})}:
neighboring = ((-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1))
alignment = intersect(e\textsubscript{2f},f\textsubscript{2e});
GROW-DIAG(); FINAL(e\textsubscript{2f}); FINAL(f\textsubscript{2e});

GROW-DIAG():
iterate until no new points added
for english word e = 0 ... en
for foreign word f = 0 ... fn
if (e aligned with f)
for each neighboring point (e-new, f-new):
if ((e-new not aligned and f-new not aligned) and
(e-new, f-new) in union(e\textsubscript{2f}, f\textsubscript{2e}))
add alignment point (e-new, f-new)

FINAL(a):
for english word e-new = 0 ... en
for foreign word f-new = 0 ... fn
if ((e-new not aligned or f-new not aligned) and
(e-new, f-new) in alignment a)
add alignment point (e-new, f-new)
Phrase-based translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered
Phrase-based translation model

- Major components of phrase-based model
 - phrase translation model \(\phi(f|e) \)
 - reordering model \(\omega^{\text{length}(e)} \)
 - language model \(p_{\text{LM}}(e) \)

- Bayes rule
 \[
 \arg\max_e p(e|f) = \arg\max_e p(f|e)p(e) = \arg\max_e \phi(f|e)p_{\text{LM}}(e)\omega^{\text{length}(e)}
 \]

- Sentence \(f \) is decomposed into \(I \) phrases \(\bar{f}^I_1 = \bar{f}_1, ..., \bar{f}_I \)

- Decomposition of \(\phi(f|e) \)
 \[
 \phi(\bar{f}^I_1|\bar{e}^I_1) = \prod_{i=1}^{I} \phi(\bar{f}_i|\bar{e}_i)d(a_i - b_{i-1})
 \]
Advantages of phrase-based translation

- *Many-to-many* translation can handle non-compositional phrases
- Use of *local context* in translation
- The more data, the *longer phrases* can be learned
Phrase translation table

- Phrase translations for *den Vorschlag*

| English | $\phi(e|f)$ | English | $\phi(e|f)$ |
|----------------------|------------|----------------------|------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| ’s proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
How to learn the phrase translation table?

• Start with the word alignment:

```
Maria no daba una bofetada a la bruja verde
```

• Collect all phrase pairs that are consistent with the word alignment:

```
Mary, did not slap the green witch
```
• **Consistent with the word alignment** \(\Rightarrow \)

 phrase alignment has to contain all alignment points for all covered words

\[
(\overline{e}, \overline{f}) \in BP \Leftrightarrow \forall e_i \in \overline{e} : (e_i, f_j) \in A \rightarrow f_j \in \overline{f} \\
\text{AND} \quad \forall f_j \in \overline{f} : (e_i, f_j) \in A \rightarrow e_i \in \overline{e}
\]
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green)
(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the),
(daba una bofetada a la bruja verde, slap the green witch)
Word alignment induced phrases (5)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch),
(no daba una bofetada a la bruja verde, did not slap the green witch),
(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)
Probability distribution of phrase pairs

- We need a **probability distribution** \(\phi(f|e) \) over the collected phrase pairs

⇒ Possible *choices*

- relative frequency of collected phrases: \(\phi(f|e) = \frac{\text{count}(f,e)}{\sum_f \text{count}(f,e)} \)

- or, conversely \(\phi(e|f) \)

- use *lexical translation probabilities*
Reordering

- **Monotone** translation
 - do not allow any reordering
 → worse translations

- **Limiting** reordering (to movement over max. number of words) helps

- **Distance-based** reordering cost
 - moving a foreign phrase over \(n \) words: cost \(\omega^n \)

- **Lexicalized** reordering model
Lexicalized reordering models

• Three **orientation** types: **monotone, swap, discontinuous**

• Probability $p(swap|e, f)$ depends on foreign (and English) **phrase** involved
Learning lexicalized reordering models

• Orientation type is *learned during phrase extractions*

• *Alignment point* to the *top left* (monotone) or *top right* (swap)?

• For more, see [Tillmann, 2003] or [Koehn et al., 2005]
Log-linear models

- IBM Models provided mathematical justification for factoring components together

\[p_{LM} \times p_{TM} \times p_D \]

- These may be weighted

\[p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D} \]

- Many components \(p_i \) with weights \(\lambda_i \)

\[\Rightarrow \prod_i p_i^{\lambda_i} = \exp(\sum_i \lambda_i \log(p_i)) \]

\[\Rightarrow \log \prod_i p_i^{\lambda_i} = \sum_i \lambda_i \log(p_i) \]
Knowledge sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features
Set feature weights

• Contribution of components p_i determined by weight λ_i

• Methods
 – manual setting of weights: try a few, take best
 – automate this process

• Learn weights
 – set aside a development corpus
 – set the weights, so that optimal translation performance on this development corpus is achieved
 – requires automatic scoring method (e.g., BLEU)
Learn feature weights

Model

change feature weights

generate n-best list

score translations

find feature weights that move up good translations

Philipp Koehn
Discriminative vs. generative models

• Generative models
 – translation process is broken down to *steps*
 – each step is modeled by a *probability distribution*
 – each probability distribution is estimated from the data by *maximum likelihood*

• Discriminative models
 – model consist of a number of *features* (e.g. the language model score)
 – each feature has a *weight*, measuring its value for judging a translation as correct
 – feature weights are *optimized on development data*, so that the system output matches correct translations as close as possible
Discriminative training

- Training set (development set)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set

- Current model translates this development set
 - n-best list of translations (n=100, 10000)
 - translations in n-best list can be scored

- Feature weights are adjusted

- N-Best list generation and feature weight adjustment repeated for a number of iterations
Learning task

- Task: *find weights*, so that feature vector of the correct translations *ranked first*

<table>
<thead>
<tr>
<th>TRANSLATION</th>
<th>IM</th>
<th>TM</th>
<th>WP</th>
<th>SER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mary not give slap witch green .</td>
<td>-17.2</td>
<td>-5.2</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>2 Mary not slap the witch green .</td>
<td>-16.3</td>
<td>-5.7</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>3 Mary not give slap of the green witch .</td>
<td>-18.1</td>
<td>-4.9</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>4 Mary not give of green witch .</td>
<td>-16.5</td>
<td>-5.1</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>5 Mary did not slap the witch green .</td>
<td>-20.1</td>
<td>-4.7</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>6 Mary did not slap green witch .</td>
<td>-15.5</td>
<td>-3.2</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>7 Mary not slap of the witch green .</td>
<td>-19.2</td>
<td>-5.3</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>8 Mary did not give slap of witch green .</td>
<td>-23.2</td>
<td>-5.0</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>9 Mary did not give slap of the green witch .</td>
<td>-21.8</td>
<td>-4.4</td>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>10 Mary did slap the witch green .</td>
<td>-15.5</td>
<td>-6.9</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>11 Mary did not slap the green witch .</td>
<td>-17.4</td>
<td>-5.3</td>
<td>-8</td>
<td>0</td>
</tr>
<tr>
<td>12 Mary did slap witch green .</td>
<td>-16.9</td>
<td>-6.9</td>
<td>-6</td>
<td>1</td>
</tr>
<tr>
<td>13 Mary did slap the green witch .</td>
<td>-14.3</td>
<td>-7.1</td>
<td>-7</td>
<td>1</td>
</tr>
<tr>
<td>14 Mary did not slap the of green witch .</td>
<td>-24.2</td>
<td>-5.3</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>15 Mary did not give slap the witch green .</td>
<td>-25.2</td>
<td>-5.5</td>
<td>-9</td>
<td>1</td>
</tr>
</tbody>
</table>

rank translation

feature vector
Methods to adjust feature weights

- **Maximum entropy** [Och and Ney, ACL2002]
 - match *expectation* of feature values of model and data

- **Minimum error rate** training [Och, ACL2003]
 - try to *rank best translations first* in n-best list
 - can be adapted for various error metrics, even BLEU

- **Ordinal regression** [Shen et al., NAACL2004]
 - *separate* k worst from the k best translations