Data Intensive Linguistics
Lecture 16
Machine translation (III): Decoding

Philipp Koehn

29 February 2008
Statistical Machine Translation

- Components: Translation model, language model, decoder

Diagram:
- foreign/English parallel text
- statistical analysis
- Translation Model
- Language Model
- Decoding Algorithm
- English text
- statistical analysis
Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated

- Each phrase is translated into English

- Phrases are reordered

Morgen fliege ich nach Kanada zur Konferenz

Tomorrow I will fly to the conference in Canada
Phrase Translation Table

Phrase Translations for “den Vorschlag”:

| English | $\phi(e|f)$ | English | $\phi(e|f)$ |
|------------------|------------|------------------|------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| ’s proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
Decoding Process

| Maria | no | dio | una | bofetada | a | la | bruja | verde |

- Build translation left to right
 - *select foreign* words to be translated
Decoding Process

- Build translation *left to right*
 - select foreign words to be translated
 - *find English* phrase translation
 - *add English* phrase to end of partial translation
Decoding Process

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - *mark foreign* words as translated
Decoding Process

- *One to many* translation
Decoding Process

- Many to one translation
Decoding Process

- *Many to one* translation
Decoding Process

- Reordering
Decoding Process

- Translation *finished*
Translation Options

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td>a slap</td>
<td></td>
<td>by</td>
<td></td>
<td>green witch</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
<td>slap</td>
<td></td>
<td></td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>slap</td>
<td></td>
<td></td>
<td>to</td>
<td>the</td>
<td></td>
<td>the witch</td>
</tr>
</tbody>
</table>

- Look up *possible phrase translations*
 - many different ways to *segment* words into phrases
 - many different ways to *translate* each phrase
Hypothesis Expansion

Start with **empty hypothesis**
- e: no English words
- f: no foreign words covered
- p: probability 1
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
</table>
| Mary | not give a slap | to the witch green
| did not give a slap | by the green witch
| no slap | to the
| did not give | to the
| slap | the witch

- e: Mary
- f: *--------
- p: 0.534

- Pick *translation option*
- Create *hypothesis*
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534
A Quick Word on Probabilities

• Not going into detail here, but...

• Translation Model
 – phrase translation probability $p(\text{Mary}|\text{Maria})$
 – reordering costs
 – phrase/word count costs
 – ...

• Language Model
 – uses trigrams:
 – $p(\text{Mary did not}) = p(\text{Mary}|\text{START}) \times p(\text{did}|\text{Mary,START}) \times p(\text{not}|\text{Mary did})$
Hypothesis Expansion

- Add another *hypothesis*
Hypothesis Expansion

- Further *hypothesis expansion*
Hypothesis Expansion

- … until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td>slap</td>
<td>by</td>
<td>to</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>did not give</td>
<td>to</td>
<td>the</td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Adding more hypothesis

⇒ Explosion of search space
Explosion of Search Space

- Number of hypotheses is *exponential* with respect to sentence length

⇒ Decoding is NP-complete [Knight, 1999]

⇒ Need to *reduce search space*
 - risk free: hypothesis *recombination*
 - risky: *histogram/threshold pruning*
Hypothesis Recombination

- Different paths to the *same* partial translation
Hypothesis Recombination

- Different paths to the same partial translation

⇒ *Combine paths*
 - *drop weaker* path
 - keep pointer from weaker path (for lattice generation)
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
• Recombined hypotheses do not have to match completely
• No matter what is added, weaker path can be dropped, if:
 – last two English words match (matters for language model)
 – foreign word coverage vectors match (effects future path)

⇒ *Combine paths*
Pruning

• Hypothesis recombination is *not sufficient*

⇒ Heuristically *discard* weak hypotheses early

• Organize Hypothesis in stacks, e.g. by
 – *same* foreign words covered
 – *same number* of foreign words covered
 – *same number* of English words produced

• Compare hypotheses in stacks, discard bad ones
 – **histogram pruning**: keep top n hypotheses in each stack (e.g., $n=100$)
 – **threshold pruning**: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)
- Organization of hypothesis into stacks
 - here: based on *number of foreign words* translated
 - during translation all hypotheses from one stack are expanded
 - expanded Hypotheses are placed into stacks
Comparing Hypotheses

• Comparing hypotheses with *same number of foreign words* covered

```
Maria no
dio una bofetada
a la
bruja verde
```

<table>
<thead>
<tr>
<th>e: Mary did not</th>
<th>f: **-------</th>
<th>p: 0.154</th>
</tr>
</thead>
</table>

```
e: the
f: ------***--
p: 0.354
```

better
partial
translation
covers
easier part
--> lower cost

• Hypothesis that covers *easy part* of sentence is preferred

⇒ Need to consider **future cost** of uncovered parts
Future Cost Estimation

- Estimate cost to translate remaining part of input

- Step 1: estimate future cost for each translation option
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 \[\text{LM} \times \text{TM} = p(\text{to}) \times p(\text{the}|\text{to}) \times p(\text{to the}|\text{a la}) \]
Future Cost Estimation: Step 2

• Step 2: find \emph{cheapest cost} among translation options
Future Cost Estimation: Step 3

- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be *pre-computed*
Future Cost Estimation: Application

- Use future cost estimates when \textit{pruning} hypotheses

- For each \textit{uncovered contiguous span}:
 - look up \textit{future costs} for each maximal contiguous uncovered span
 - \textit{add} to actually accumulated cost for translation option for pruning
A* search

• Pruning might drop hypothesis that lead to the best path (search error)

• A* search: safe pruning
 – future cost estimates have to be accurate or underestimates
 – lower bound for probability is established early by depth first search: compute cost for one complete translation
 – if cost-so-far and future cost are worse than lower bound, hypothesis can be safely discarded

• Not commonly done, since not aggressive enough
Limits on Reordering

• Reordering may be limited
 – Monotone Translation: No reordering at all
 – Only phrase movements of at most n words

• Reordering limits speed up search (polynomial instead of exponential)

• Current reordering models are weak, so limits improve translation quality
Word Lattice Generation

- **Search graph** can be easily converted into a *word lattice*
 - can be further mined for **n-best lists**
 - enables **reranking** approaches
 - enables **discriminative training**
Sample N-Best List

- Simple **N-best list**:

<table>
<thead>
<tr>
<th>Translation</th>
<th>Reordering LM</th>
<th>TM WordPenalty</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>this is a small house</td>
<td>0</td>
<td>-27.0908</td>
<td>-28.9234</td>
</tr>
<tr>
<td>this is a little house</td>
<td>0</td>
<td>-28.1791</td>
<td>-30.0117</td>
</tr>
<tr>
<td>it is a small house</td>
<td>0</td>
<td>-27.108</td>
<td>-30.3268</td>
</tr>
<tr>
<td>it is a little house</td>
<td>0</td>
<td>-28.1963</td>
<td>-31.4152</td>
</tr>
<tr>
<td>this is an small house</td>
<td>0</td>
<td>-31.7294</td>
<td>-33.562</td>
</tr>
<tr>
<td>it is an small house</td>
<td>0</td>
<td>-32.3094</td>
<td>-35.5283</td>
</tr>
<tr>
<td>this is an little house</td>
<td>0</td>
<td>-33.7639</td>
<td>-35.5965</td>
</tr>
<tr>
<td>this is a house small</td>
<td>-3</td>
<td>-31.4851</td>
<td>-36.3176</td>
</tr>
<tr>
<td>this is a house little</td>
<td>-3</td>
<td>-31.5689</td>
<td>-36.4015</td>
</tr>
<tr>
<td>it is an little house</td>
<td>0</td>
<td>-34.3439</td>
<td>-37.562</td>
</tr>
<tr>
<td>it is a house small</td>
<td>-3</td>
<td>-31.5022</td>
<td>-37.7211</td>
</tr>
<tr>
<td>this is an house small</td>
<td>-3</td>
<td>-32.8999</td>
<td>-37.7325</td>
</tr>
<tr>
<td>it is a house little</td>
<td>-3</td>
<td>-31.586</td>
<td>-37.8049</td>
</tr>
<tr>
<td>this is a house little</td>
<td>-3</td>
<td>-32.9837</td>
<td>-37.8163</td>
</tr>
<tr>
<td>the house is a little</td>
<td>-7</td>
<td>-28.5107</td>
<td>-38.0364</td>
</tr>
<tr>
<td>the is a small house</td>
<td>0</td>
<td>-35.6899</td>
<td>-38.2156</td>
</tr>
<tr>
<td>is it a little house</td>
<td>-4</td>
<td>-30.3603</td>
<td>-38.2723</td>
</tr>
<tr>
<td>the house is a small</td>
<td>-7</td>
<td>-28.7683</td>
<td>-38.294</td>
</tr>
<tr>
<td>it ’s a small house</td>
<td>0</td>
<td>-34.8557</td>
<td>-38.7677</td>
</tr>
<tr>
<td>this house is a little</td>
<td>-7</td>
<td>-28.0443</td>
<td>-38.9563</td>
</tr>
<tr>
<td>it ’s a little house</td>
<td>0</td>
<td>-35.1446</td>
<td>-39.0566</td>
</tr>
<tr>
<td>this house is a small</td>
<td>-7</td>
<td>-28.3018</td>
<td>-39.2139</td>
</tr>
</tbody>
</table>
XML Markup

Er erzielte <NUMBER english='17.55'>17,55</NUMBER> Punkte.

- Add additional translation options
 - number translation
 - name translation

- Additional options
 - provide multiple translations
 - provide probability distribution along with translations
 - allow bypassing of provided translations