Data Intensive Linguistics Lecture 16 Machine translation (III): Decoding

Philipp Koehn

29 February 2008

Philipp Koehn

EMNLP Lecture 16

29 February 2008

Phrase-Based Translation

- Foreign input is segmented in phrases
 any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Philipp Koehn

EMNLP Lecture 16

29 February 2008

School of

School of

Phrase Translation Table

• Phrase Translations for "den Vorschlag":

English	φ (e f)	English	$\phi(\mathbf{e} \mathbf{f})$
the proposal	0.6227	the suggestions	0.0114
's proposal	0.1068	the proposed	0.0114
a proposal	0.0341	the motion	0.0091
the idea	0.0250	the idea of	0.0091
this proposal	0.0227	the proposal ,	0.0068
proposal	0.0205	its proposal	0.0068
of the proposal	0.0159	it	0.0068
the proposals	0.0159		

	Maria	no	dio	una	bofetada	a	la	bruja	verde
--	-------	----	-----	-----	----------	---	----	-------	-------

• Build translation left to right

- *select foreign* words to be translated

Philipp Koehn

EMNLP Lecture 16

29 February 2008

informatics

Decoding Process

Maı	ria	no	dio	una	bofetada	a	la	bruja	verde
	,								
Ma	ry								

- Build translation *left to right*
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation

Maria no dio una bofetada a la bruja ver
--

Mary

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - mark foreign words as translated

Philipp Koehn

EMNLP Lecture 16

29 February 2008

informatics

Decoding Process

Maria	no	dio	una	bofetada	a	la	bruja	verde
	Ļ							
Mary	did not							

• One to many translation

Maria	no	dio una 1	a	la	bruja	verde	
			,				
Mary	did not	slap					

• Many to one translation

Philipp Koehn

EMNLP Lecture 16

29 February 2008

f informatics

Decoding Process

Maria	no	dio una bofetada	a la	bruja	verde
			ļ		
Mary	did not	slap	the		

• *Many to one* translation

Maria	no	dio una bofetada	a la	bruja	verde
				/	
Mary	did not	slap	the	green	
					-

• Reordering

Philipp Koehn	EMNLP Lecture 16	29 February 2008
		5

11 informatics

Decoding Process

Maria	no	dio una bofetada	a la	bruja	verde
					\mathbf{i}
Mary	did not	slap	the	green	witch

• Translation *finished*

Translation Options

Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	not 	give				the	wit.ch green	green witch
	no		slap			to the		
	did_no	I not. give			t.	0		
					t.}	1e		
			sl	ар		the v	witch	

- Look up *possible phrase translations*
 - many different ways to *segment* words into phrases
 - many different ways to *translate* each phrase

Philipp Koehn

EMNLP Lecture 16

29 February 2008

informatics

Hypothesis Expansion

Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	not	give	<u>a slap</u> .		<u>to</u> <u>the</u>		witch green	green witch
	no		slap		to the			
	<u>did not give</u>			t	0			
					t.}	1e		
			sl	ар		the v	witch	

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1

Hypothesis Expansion

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	<u>not</u> did not	give	<u> </u>	slap lap	<u>to</u>	<u>the</u>	witch green	green witch
	did_no	t give	_give		to			
		slap			the witch			

- Pick translation option
- Create hypothesis
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

Philipp Koehn

EMNLP Lecture 16

29 February 2008

School of

A Quick Word on Probabilities

• Not going into detail here, but...

• Translation Model

- phrase translation probability p(Mary|Maria)
- reordering costs
- phrase/word count costs
- ...
- Language Model
 - uses trigrams:
 - p(Mary did not) = $p(Mary|START) \times p(did|Mary,START) \times p(not|Mary did)$

Hypothesis Expansion

Maria	no	dio	una	bofetada	a	la	bruja	verde	
Mary	not. no	give	a a_s a_s	slap	<u>to</u> <u>by</u> to	<u>the</u>	witch green	_green_ witch	
	did_no	did not give			t	to			
	slap			ŧ.	the	witch			
	e: f: p:	witch *- .182							
e: f: p: 1	e: f: p:	Mary * .534							

• Add another *hypothesis*

Philipp Koehn

EMNLP Lecture 16

29 February 2008

17 informatics

Hypothesis Expansion

Maria	no	dio una bofetada		a	la	bruja	verde	
<u>Mary</u>	not no			<u>to</u> <u>by</u> to	<u>the</u>	witch green	green witch	
	did_no	t give	_give		t	0		
			sl	ap	t.	the	witch	
e: f: p: 1	e: f: p: 	witch *- .182 Mary *	e: f: *-* p: .04	slap ** 3				

• Further *hypothesis expansion*

Hypothesis Expansion

Maria	no	dio una bofetada		a	la	bruja verde	
Mary	<u>not</u> did not	give	aslap	<u>t.o</u> by	<u>the</u>	_witchgreen_ green_witch	
	 did_nc	t give	stap	to t tł			
	e: f·	witch	e: slap		the w	<u>/11.CII</u>	
		.182	p: .043				
e: f: p: 1	 f: p:	Mary * .534	e: did not f: ** p: .154	e: slap f: ***** p: .015	e: the f: ****** p: .00428	<pre>e:green witch f: ******** p: .000271</pre>	

- ... until all foreign words *covered*
 - find *best hypothesis* that covers all foreign words
 - *backtrack* to read off translation

Philipp Koehn

EMNLP Lecture 16

29 February 2008

School of

19

- Adding more hypothesis
- \Rightarrow *Explosion* of search space

Explosion of Search Space

- Number of hypotheses is *exponential* with respect to sentence length
- \Rightarrow Decoding is NP-complete [Knight, 1999]
- \Rightarrow Need to *reduce search space*
 - risk free: hypothesis recombination
 - risky: histogram/threshold pruning

Philipp Koehn

EMNLP Lecture 16

29 February 2008

School of

²¹ Hypothesis Recombination

• Different paths to the *same* partial translation

Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - *last two English words* match (matters for language model)
 - *foreign word coverage* vectors match (effects future path)

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)

```
\Rightarrow Combine paths
```

```
Philipp Koehn
```

EMNLP Lecture 16

29 February 2008

School of

5 informatics

Pruning

- Hypothesis recombination is not sufficient
- ⇒ Heuristically *discard* weak hypotheses early
 - Organize Hypothesis in stacks, e.g. by
 - *same* foreign words covered
 - same number of foreign words covered
 - *same number* of English words produced
 - Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., n=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)

Hypothesis Stacks

- Organization of hypothesis into stacks
 - here: based on number of foreign words translated
 - during translation all hypotheses from one stack are expanded
 - expanded Hypotheses are placed into stacks

Philipp Koeh	n
--------------	---

EMNLP Lecture 16

29 February 2008

- Hypothesis that covers *easy part* of sentence is preferred
- \Rightarrow Need to consider **future cost** of uncovered parts

Future Cost Estimation

- Estimate cost to translate remaining part of input
- Step 1: estimate future cost for each *translation option*
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 - \rightarrow LM * TM = p(to) * p(the|to) * p(to the|a la)

Philipp Koehn

EMNLP Lecture 16

29 February 2008

• Step 2: find *cheapest cost* among translation options

- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be *pre-computed*

Philipp Koehn	EMNLP Lecture 16	29 February 2008

- Use future cost estimates when *pruning* hypotheses
- For each *uncovered contiguous span*:
 - look up *future costs* for each maximal contiguous uncovered span
 - add to actually accumulated cost for translation option for pruning

School of Orma

31 **inf**

30 informat

A* search

- Pruning might drop hypothesis that lead to the best path (search error)
- **A* search**: safe pruning
 - future cost estimates have to be accurate or underestimates
 - lower bound for probability is established early by
 depth first search: compute cost for one complete translation
 - if cost-so-far and future cost are worse than *lower bound*, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough

Philipp Koehn

EMNLP Lecture 16

29 February 2008

informatics

Limits on Reordering

- Reordering may be **limited**
 - Monotone Translation: No reordering at all
 - Only phrase movements of at most n words
- Reordering limits *speed* up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality

Word Lattice Generation

p=0.164

give

did not.

- Search graph can be easily converted into a word lattice
 - can be further mined for **n-best lists**
 - \rightarrow enables **reranking** approaches
 - \rightarrow enables discriminative training

Philipp Koehn

EMNLP Lecture 16

29 February 2008

informatics

Sample N-Best List

• Simple N-best list:

Translation ||| Reordering LM TM WordPenalty ||| Score this is a small house ||| 0 -27.0908 -1.83258 -5 ||| -28.9234 this is a little house ||| 0 -28.1791 -1.83258 -5 ||| -30.0117 it is a small house ||| 0 -27.108 -3.21888 -5 ||| -30.3268 it is a little house ||| 0 -28.1963 -3.21888 -5 ||| -30.3268 this is an small house ||| 0 -31.7294 -1.83258 -5 ||| -33.562 it is an small house ||| 0 -32.3094 -3.21888 -5 ||| -35.5283 this is an little house ||| 0 -33.7639 -1.83258 -5 ||| -35.5965 this is a house small ||| -3 -31.4851 -1.83258 -5 ||| -36.3176 this is a house little ||| -3 -31.5689 -1.83258 -5 ||| -36.4015 it is an little house ||| 0 -34.3439 -3.21888 -5 ||| -37.5628 it is a house small ||| -3 -31.5022 -3.21888 -5 ||| -37.7211 this is an house small ||| -3 -32.8999 -1.83258 -5 ||| -37.7325 it is a house little ||| -3 -31.586 -3.21888 -5 ||| -37.8049 this is an house little ||| -3 -32.9837 -1.83258 -5 ||| -37.8163 the house is a little ||| -7 -28.5107 -2.52573 -5 ||| -38.0364 the is a small house ||| 0 -35.6899 -2.52573 -5 ||| -38.2156 is it a little house ||| -4 -30.3603 -3.91202 -5 ||| -38.2723 the house is a small ||| -7 -28.7683 -2.52573 -5 ||| -38.294 it 's a small house ||| 0 -34.8557 -3.91202 -5 ||| -38.7677 this house is a little ||| -7 -28.0443 -3.91202 -5 ||| -38.9563 it 's a little house ||| 0 -35.1446 -3.91202 -5 ||| -39.0566 this house is a small ||| -7 -28.3018 -3.91202 -5 ||| -39.2139

XML Markup

Er erzielte <NUMBER english='17.55'>17,55</NUMBER> Punkte .

- Add additional translation options
 - number translation
 - name translation
- Additional options
 - provide multiple translations
 - provide probability distribution along with translations
 - allow bypassing of provided translations

Philipp Koehn

EMNLP Lecture 16

29 February 2008