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Lexical translation

• How to translate a word → look up in dictionary

Haus — house, building, home, household, shell.

• Multiple translations

– some more frequent than others
– for instance: house, and building most common
– special cases: Haus of a snail is its shell

• Note: During all the lectures, we will translate from a foreign language into
English
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Collect statistics

• Look at a parallel corpus (German text along with English translation)

Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50
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Estimate translation probabilities

• Maximum likelihood estimation

pf(e) =



0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.
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Alignment

• In a parallel text (or when we translate), we align words in one language with
the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

• Word positions are numbered 1–4
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Alignment function

• Formalizing alignment with an alignment function

• Mapping an English target word at position i to a German source word at
position j with a function a : i → j

• Example
a : {1 → 1, 2 → 2, 3 → 3, 4 → 4}
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Reordering

• Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1 → 3, 2 → 4, 3 → 2, 4 → 1}
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One-to-many translation

• A source word may translate into multiple target words

das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4

5

a : {1 → 1, 2 → 2, 3 → 3, 4 → 4, 5 → 4}
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Dropping words

• Words may be dropped when translated

– The German article das is dropped

das Haus ist klein

house is small
1 2 3

1 2 3 4

a : {1 → 2, 2 → 3, 3 → 4}
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Inserting words

• Words may be added during translation

– The English just does not have an equivalent in German
– We still need to map it to something: special null token

das Haus ist klein

the house is just small

NULL

1 2 3 4

1 2 3 4

5

0

a : {1 → 1, 2 → 2, 3 → 3, 4 → 0, 5 → 4}

Philipp Koehn EMNLP Lecture 15 25 February 2008



10

IBM Model 1

• Generative model: break up translation process into smaller steps

– IBM Model 1 only uses lexical translation

• Translation probability

– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

– parameter ε is a normalization constant
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Example
das Haus ist klein

e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
household 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e, a|f) =
ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε
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Learning lexical translation models

• We would like to estimate the lexical translation probabilities t(e|f) from a
parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem

– if we had the alignments,
→ we could estimate the parameters of our generative model

– if we had the parameters,
→ we could estimate the alignments
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EM algorithm

• Incomplete data

– if we had complete data, would could estimate model
– if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell

– initialize model parameters (e.g. uniform)
– assign probabilities to the missing data
– estimate model parameters from completed data
– iterate
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EM algorithm
... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the
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EM algorithm
... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between la and the are more likely
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EM algorithm
... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration

• It becomes apparent that alignments, e.g., between fleur and flower are more
likely (pigeon hole principle)
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EM algorithm
... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• Convergence

• Inherent hidden structure revealed by EM
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EM algorithm
... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

p(la|the) = 0.453
p(le|the) = 0.334

p(maison|house) = 0.876
p(bleu|blue) = 0.563

...

• Parameter estimation from the aligned corpus
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IBM Model 1 and EM

• EM Algorithm consists of two steps

• Expectation-Step: Apply model to the data

– parts of the model are hidden (here: alignments)
– using the model, assign probabilities to possible values

• Maximization-Step: Estimate model from data

– take assign values as fact
– collect counts (weighted by probabilities)
– estimate model from counts

• Iterate these steps until convergence
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IBM Model 1 and EM

• We need to be able to compute:

– Expectation-Step: probability of alignments
– Maximization-Step: count collection
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IBM Model 1 and EM

• Probabilities
p(the|la) = 0.7 p(house|la) = 0.05

p(the|maison) = 0.1 p(house|maison) = 0.8

• Alignments

la •
maison•

the•
house•

la •
maison•

the•
house•

@
@

@

la •
maison•

the•
house•,

,
, la •

maison•
the•
house•

@
@

@,
,

,

p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005

p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

• Counts
c(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007

c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118
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IBM Model 1 and EM: Expectation Step

• We need to compute p(a|e, f)

• Applying the chain rule:

p(a|e, f) =
p(e, a|f)
p(e|f)

• We already have the formula for p(e, a|f) (definition of Model 1)
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IBM Model 1 and EM: Expectation Step

• We need to compute p(e|f)

p(e|f) =
∑

a

p(e, a|f)

=
lf∑

a(1)=0

...

lf∑
a(le)=0

p(e, a|f)

=
lf∑

a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))
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IBM Model 1 and EM: Expectation Step

p(e|f) =
lf∑

a(1)=0

...

lf∑
a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)le

lf∑
a(1)=0

...

lf∑
a(le)=0

le∏
j=1

t(ej|fa(j))

=
ε

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej|fi)

• Note the trick in the last line
– removes the need for an exponential number of products
→ this makes IBM Model 1 estimation tractable
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The trick (case le = lf = 2)
2∑

a(1)=0

2∑
a(2)=0

=
ε

32

2∏
j=1

t(ej|fa(j)) =

= t(e1|f0) t(e2|f0) + t(e1|f0) t(e2|f1) + t(e1|f0) t(e2|f2)+

+ t(e1|f1) t(e2|f0) + t(e1|f1) t(e2|f1) + t(e1|f1) t(e2|f2)+

+ t(e1|f2) t(e2|f0) + t(e1|f2) t(e2|f1) + t(e1|f2) t(e2|f2) =

= t(e1|f0) (t(e2|f0) + t(e2|f1) + t(e2|f2))+

+ t(e1|f1) (t(e2|f1) + t(e2|f1) + t(e2|f2))+

+ t(e1|f2) (t(e2|f2) + t(e2|f1) + t(e2|f2)) =

= (t(e1|f0) + t(e1|f1) + t(e1|f2)) (t(e2|f2) + t(e2|f1) + t(e2|f2))
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IBM Model 1 and EM: Expectation Step

• Combine what we have:

p(a|e, f) = p(e, a|f)/p(e|f)

=
ε

(lf+1)le

∏le
j=1 t(ej|fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej|fi)

=
le∏

j=1

t(ej|fa(j))∑lf
i=0 t(ej|fi)
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IBM Model 1 and EM: Maximization Step

• Now we have to collect counts

• Evidence from a sentence pair e,f that word e is a translation of word f :

c(e|f ; e, f) =
∑

a

p(a|e, f)
le∑

j=1

δ(e, ej)δ(f, fa(j))

• With the same simplication as before:

c(e|f ; e, f) =
t(e|f)∑lf

i=0 t(e|fi)

le∑
j=1

δ(e, ej)
lf∑

i=0

δ(f, fi)
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IBM Model 1 and EM: Maximization Step

• After collecting these counts over a corpus, we can estimate the model:

t(e|f ; e, f) =

∑
(e,f) c(e|f ; e, f))∑

f

∑
(e,f) c(e|f ; e, f))
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IBM Model 1 and EM: Pseudocode

initialize t(e|f) uniformly
do until convergence

set count(e|f) to 0 for all e,f
set total(f) to 0 for all f
for all sentence pairs (e_s,f_s)

for all words e in e_s
total_s(e) = 0
for all words f in f_s

total_s(e) += t(e|f)
for all words e in e_s

for all words f in f_s
count(e|f) += t(e|f) / total_s(e)
total(f) += t(e|f) / total_s(e)

for all f
for all e

t(e|f) = count(e|f) / total(f)
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Higher IBM Models
IBM Model 1 lexical translation
IBM Model 2 adds absolute reordering model
IBM Model 3 adds fertility model
IBM Model 4 relative reordering model
IBM Model 5 fixes deficiency

• Only IBM Model 1 has global maximum

– training of a higher IBM model builds on previous model

• Compuationally biggest change in Model 3

– trick to simplify estimation does not work anymore
→ exhaustive count collection becomes computationally too expensive
– sampling over high probability alignments is used instead
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IBM Model 4

Mary did not slap the green witch

Mary not slap slap slap the green witch

Mary not slap slap slap NULL the green witch

Maria no daba una botefada a la verde bruja

Maria no daba una bofetada a la bruja verde

n(3|slap)

p-null

t(la|the)

d(4|4)
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