Empirical Methods in Natural Language Processing Lecture 15 Machine translation (II): Word-based models and the EM algorithm

Philipp Koehn

Philipp Koehn EMNLP Lecture 15 25 February 2008

Lexical translation

- ullet How to translate a word o look up in dictionary
 - Haus house, building, home, household, shell.
- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

• Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Philipp Koehn EMNLP Lecture 15 25 February 2008

Estimate translation probabilities

• Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \textit{house}, \\ 0.16 & \text{if } e = \textit{building}, \\ 0.02 & \text{if } e = \textit{home}, \\ 0.015 & \text{if } e = \textit{household}, \\ 0.005 & \text{if } e = \textit{shell}. \end{cases}$$

Alignment

• In a parallel text (or when we translate), we **align** words in one language with the words in the other

• Word *positions* are numbered 1–4

Philipp Koehn EMNLP Lecture 15 25 February 2008

Alignment function

- Formalizing *alignment* with an **alignment function**
- ullet Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a:\{1\rightarrow 1,2\rightarrow 2,3\rightarrow 3,4\rightarrow 4\}$$

Reordering

• Words may be reordered during translation

Philipp Koehn EMNLP Lecture 15 25 February 2008

One-to-many translation

A source word may translate into multiple target words

Dropping words

- Words may be dropped when translated
 - The German article das is dropped

Philipp Koehn EMNLP Lecture 15 25 February 2008

Inserting words

- Words may be added during translation
 - The English *just* does not have an equivalent in German
 - We still need to map it to something: special $\scriptstyle{\mathrm{NULL}}$ token

IBM Model 1

- Generative model: break up translation process into smaller steps
 - IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1,...,f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e}=(e_1,...,\mathring{e}_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- parameter ϵ is a normalization constant

Philipp Koehn EMNLP Lecture 15 25 February 2008

Example

das		
e	t(e f)	
the	0.7	
that	0.15	
which	0.075	
who	0.05	
this	0.025	

Haus	
e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

150	
e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

ist

1110111		
e	t(e f)	
small	0.4	
little	0.4	
short	0.1	
minor	0.06	
petty	0.04	

klein

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028\epsilon \end{split}$$

Learning lexical translation models

- ullet We would like to $\it estimate$ the lexical translation probabilities $\it t(e|f)$ from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the alignments,
 - \rightarrow we could estimate the *parameters* of our generative model
 - if we had the *parameters*,
 - → we could estimate the *alignments*

Philipp Koehn EMNLP Lecture 15 25 February 2008

EM algorithm

- Incomplete data
 - if we had complete data, would could estimate model
 - if we had *model*, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate

EM algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• Initial step: all alignments equally likely

• Model learns that, e.g., la is often aligned with the

Philipp Koehn EMNLP Lecture 15 25 February 2008

EM algorithm

... la maison ... la maison blue ... la fleur ...

.. the house ... the blue house ... the flower ...

• After one iteration

• Alignments, e.g., between *la* and *the* are more likely

EM algorithm

... la maison ... la maison bleu ... la fleur ...

- After another iteration
- It becomes apparent that alignments, e.g., between *fleur* and *flower* are more likely (pigeon hole principle)

Philipp Koehn EMNLP Lecture 15 25 February 2008

EM algorithm

- Convergence
- Inherent hidden structure revealed by EM

EM algorithm

Parameter estimation from the aligned corpus

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 1 and EM

• Probabilities
$$p(\mathsf{the}|\mathsf{la}) = 0.7 \qquad p(\mathsf{house}|\mathsf{la}) = 0.05 \\ p(\mathsf{the}|\mathsf{maison}) = 0.1 \qquad p(\mathsf{house}|\mathsf{maison}) = 0.8$$

Alignments

la •• the maison •• house
$$p(\mathbf{e}, a|\mathbf{f}) = 0.56$$
 $p(\mathbf{e}, a|\mathbf{f}) = 0.035$ $p(\mathbf{e}, a|\mathbf{f}) = 0.08$ $p(\mathbf{e}, a|\mathbf{f}) = 0.005$ $p(a|\mathbf{e}, \mathbf{f}) = 0.0824$ $p(a|\mathbf{e}, \mathbf{f}) = 0.052$ $p(a|\mathbf{e}, \mathbf{f}) = 0.118$ $p(a|\mathbf{e}, \mathbf{f}) = 0.007$

• Counts
$$\begin{array}{ll} c(\mathsf{the}|\mathsf{la}) = 0.824 + 0.052 & c(\mathsf{house}|\mathsf{la}) = 0.052 + 0.007 \\ c(\mathsf{the}|\mathsf{maison}) = 0.118 + 0.007 & c(\mathsf{house}|\mathsf{maison}) = 0.824 + 0.118 \\ \end{array}$$

IBM Model 1 and EM: Expectation Step

- We need to compute $p(a|\mathbf{e}, \mathbf{f})$
- Applying the *chain rule*:

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

• We already have the formula for $p(\mathbf{e}, \mathbf{a}|\mathbf{f})$ (definition of Model 1)

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 1 and EM: Expectation Step

ullet We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

IBM Model 1 and EM: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - → this makes IBM Model 1 estimation tractable

Philipp Koehn EMNLP Lecture 15 25 February 2008

The trick

(case
$$l_e = l_f = 2$$
)

$$\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} = \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) =$$

$$= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) +$$

$$+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) +$$

$$+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) =$$

$$= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) +$$

$$+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) +$$

$$+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) =$$

$$= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2}))$$

IBM Model 1 and EM: Expectation Step

• Combine what we have:

$$\begin{split} p(\mathbf{a}|\mathbf{e},\mathbf{f}) &= p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f}) \\ &= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\ &= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)} \end{split}$$

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- ullet Evidence from a sentence pair ${f e}$, ${f f}$ that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{i=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

IBM Model 1 and EM: Maximization Step

• After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{f} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do until convergence
  set count(e|f) to 0 for all e,f
  set total(f) to 0 for all f
  for all sentence pairs (e_s,f_s)
    for all words e in e_s
      total_s(e) = 0
      for all words f in f_s
        total_s(e) += t(e|f)
    for all words e in e_s
      for all words f in f_s
        count(e|f) += t(e|f) / total_s(e)
        total(f) += t(e|f) / total_s(e)
  for all f
    for all e
      t(e|f) = count(e|f) / total(f)
```


Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

- Only IBM Model 1 has global maximum
 - training of a higher IBM model builds on previous model
- Compuationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 - → exhaustive count collection becomes computationally too expensive
 - sampling over high probability alignments is used instead

Philipp Koehn EMNLP Lecture 15 25 February 2008

IBM Model 4

