Empirical Methods in Natural Language Processing
Lecture 13
Semantics and discourse

Philipp Koehn

18 February 2008
Semantics

• What is meaning?

• What is the meaning of the word cat?
 – not a specific cat
 – not all cats
 → abstract notion of any cat

• Atomic semantic units: concepts
 – example: cat → CAT
WordNet: an ontology of concepts

ENTITY

ANIMAL

MAMMAL

CARNIVORE

FELINE

CAT

DOG

WOLF

FOX

CANINE

BEAR
Semantic relationships

• **Hypernym / hyponym**
 – *CAT is-a FELINE*
 – basis of hierarchical relationships in WordNet

• **Part / whole**
 – *CAT has-part PAW*
 – *PAW is-part-of CAT*

• **Membership**
 – *FACULTY has-member PROFESSOR*
 – *PROFESSOR is-member-of FACULTY*

• **Antonym / opposite**
 – *LEADER is-opposite-of FOLLOWER*
Thematic roles

• Words play semantic roles in a sentence

\[
\text{I see the woman with the telescope}.
\]

AGENT THEME INSTRUMENT

• Specific verbs typically require arguments with specific thematic roles and allow adjuncts with specific thematic roles.
Semantic frames

- Complex concepts can be defined by **semantic frames**, whose **slots** are filled by concrete information

- **SOCCER-GAME**
 - **HOME-TEAM**: Heart of Midlothian
 - **AWAY-TEAM**: FC Motherwell
 - **SCORE**: 3-0
 - **TIME-STARTED**: 2006-02-18 16:00 GMT
 - **LOCATION**: Tynecastle Stadium, Edinburgh

- **Information extraction**: can we fill semantic frames from text?
Source of semantic knowledge

- Semantic knowledge is not directly observable

- Building semantic knowledge bases
 - for instance WordNet, an ontology
 - labor intensive
 - may not contain all information we want, e.g.
 * pigeon is a typical bird
 * penguin is not a typical bird

- Can we automatically learn semantics?
Learning semantics

The meaning of a word is its use.
Ludwig Wittgenstein, Aphorism 43

- Represent context of a word in a vector
 → Similar words have similar context vectors

- Example: Google sets http://labs.google.com/sets
 - one meaning of *cat*
 - enter: *cat, dog*
 - return: *cat, dog, horse, fish, bird, rabbit, cattle, ...*
 - another meaning of *cat*
 - enter: *cat, more*
 - return: *more, cat, ls, rm, mv, cd, cp, ...*
Learning prejudices

- Detecting national stereotypes with Google

- Enter: *Scots are known to be*
 ⇒ frugal, friendly, generous, thrifty, ...

- Enter: *Englishmen are known to be*
 ⇒ prudish, great sports-lovers, people with manners, courteous, cold, ...

- Enter: *Germans are known to be*
 ⇒ pathetic, hard-nosed, arrogant, very punctual, fanatical, hard-working, ...
Discourse

- Beyond the sentence level, we are interested in how texts are structured
 - central message of text
 - supporting arguments
 - introduction, conclusion

- Elementary discourse units (EDU) (∼ clauses) are related to each other

- Texts shift in focus → text segmentation
Text segmentation

• Some text types have very pronounced topic shifts
 – news broadcasts cover different stories

• Also other long texts may cover multiple topics
 – lectures
 – speeches
 – essays

• Task text segmentation
 – given: text
 – wanted: segmentation into smaller units with different topics
Segmentation by vocabulary change

- At a **topic boundary**, use of vocabulary changes

- By comparing vocabulary of neighboring text parts, boundaries can be detected

- Example: *Stargazers text* from Hearst [1994]
 - intro: the search for life in space
 - the moons chemical composition
 - how early proximity of the moon shaped it
 - how the moon helped life evolve on earth
 - improbability of the earth-moon system

 next slide from MIT class 6.864: *Natural Language Processing*
Rhetorical relations

- **Rhetorical Structure Theory (RST):** relations between spans of EDUs

- Example:

  ```
  the bank also says
  ```

  ```
  it will use its network to channel investments
  ```
Types of rhetorical relations

- **Mono-nuclear**: **Nucleus** is more salient than **satellite**, which contains supporting information.

- **Multi-nuclear**: joining spans have equal importance.

- 78 types of relations in 16 classes:
 - attribution, background, cause, comparison, condition, contrast, elaboration, enablement, evaluation, explanation, joint, manner-means, topic-comment, summary, temporal, topic-change.

- More detail, see: *Building a discourse-tagged corpus in the framework of rhetorical structure theory* by Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski [SIGDIAL 2001]
Discourse parsing

- **Human annotator agreement** on rhetorical relations is not very high
 - 77.0% if 18 relation types are used
 - 71.9% if 110 relation types are used

- **Probabilistic parsing model** [Soricut and Marcu, NAACL 2003]
 - probabilistic chart parser
 - achieves similar performance

- Experiments done on the sentence level.

- Discourse parsing should be useful for, e.g., summarization
Anaphora

Violent protests broke out again in Happyland. According to the country’s department of peace, flowers will be handed out tomorrow. A spokesman of the department announced that they will be blue and green. This will demonstrate the country’s commitment to alleviate the situation.

- A text contains often multiple references to the same objects:
 - flowers — they
 - Happyland — the country
 - department of peace — the department
 - violent protests — the situation
 - handing out flowers — this

- Anaphora resolution (matching the references) is a hard problem
Sentiment detection

• What is the overall sentiment of a text

• Example: *movie review*

 – is it a recommendation or a negative review?
 – can be framed as a text classification problem
 – see *Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales* by Bo Pang and Lillian Lee [ACL 2005]

• Similar questions

 – is a text critical of a person?
 – does the text have a bias (political, etc.)?