Semantics

• What is meaning?

• What is the meaning of the word cat?
 – not a specific cat
 – not all cats
 → abstract notion of any cat

• Atomic semantic units: concepts
 – example: cat → CAT
WordNet: an ontology of concepts

Semantic relationships

- **Hypernym / hyponym**
 - *CAT is-a FELINE*
 - basis of hierarchical relationships in WordNet

- **Part / whole**
 - *CAT has-part PAW*
 - *PAW is-part-of CAT*

- **Membership**
 - *FACULTY has-member PROFESSOR*
 - *PROFESSOR is-member-of FACULTY*

- **Antonym / opposite**
 - *LEADER is-opposite-of FOLLOWER*
Thematic roles

- Words play **semantic roles** in a sentence

\[\text{I see the woman with the telescope}. \]

- Specific verbs typically require **arguments** with specific thematic roles and allow **adjuncts** with specific thematic roles.

Semantic frames

- Complex concepts can be defined by **semantic frames**, whose **slots** are filled by concrete information

- **SOCcer-GAME**
 - **HOME-TEAM**: Heart of Midlothian
 - **AWAY-TEAM**: FC Motherwell
 - **SCORE**: 3-0
 - **TIME-STARTED**: 2006-02-18 16:00 GMT
 - **LOCATION**: Tynecastle Stadium, Edinburgh

- **Information extraction**: can we fill semantic frames from text?
Source of semantic knowledge

• Semantic knowledge is not directly observable

• Building semantic knowledge bases
 – for instance WordNet, an ontology
 – labor intensive
 – may not contain all information we want, e.g.
 * pigeon is a typical bird
 * penguin is not a typical bird

• Can we automatically learn semantics?

Learning semantics

The meaning of a word is its use.
Ludwig Wittgenstein, Aphorism 43

• Represent context of a word in a vector
 → Similar words have similar context vectors

• Example: Google sets http://labs.google.com/sets
 – one meaning of cat
 - enter: cat, dog
 - return: cat, dog, horse, fish, bird, rabbit, cattle, ...
 – another meaning of cat
 - enter: cat, more
 - return: more, cat, ls, rm, mv, cd, cp, ...
Learning prejudices

• Detecting national stereotypes with Google

• Enter: Scots are known to be *
 ⇒ frugal, friendly, generous, thrifty, ...

• Enter: Englishmen are known to be *
 ⇒ prudish, great sports-lovers, people with manners, courteous, cold, ...

• Enter: Germans are known to be *
 ⇒ pathetic, hard-nosed, arrogant, very punctual, fanatical, hard-working, ...

Discourse

• Beyond the sentence level, we are interested in how texts are structured
 – central message of text
 – supporting arguments
 – introduction, conclusion

• Elementary discourse units (EDU) (≈ clauses) are related to each other

• Texts shift in focus → text segmentation
Text segmentation

- Some text types have very pronounced **topic shifts**
 - news broadcasts cover different stories

- Also other long texts may cover multiple topics
 - lectures
 - speeches
 - essays

- Task text segmentation
 - **given**: text
 - **wanted**: segmentation into smaller units with different topics

Segmentation by vocabulary change

- At a **topic boundary**, use of vocabulary changes

- By comparing vocabulary of neighboring text parts, boundaries can be detected

- Example: *Stargazers text* from Hearst [1994]
 - intro: the search for life in space
 - the moons chemical composition
 - how early proximity of the moon shaped it
 - how the moon helped life evolve on earth
 - improbability of the earth-moon system

next slide from MIT class 6.864: *Natural Language Processing*
Rhetorical relations

- **Rhetorical Structure Theory (RST)**: relations between spans of EDUs

- Example:

 \[\text{the bank also says} \]

 \[\text{it will use its network to channel investments} \]
Types of rhetorical relations

- **Mono-nuclear**: Nucleus is more salient than satellite, which contains supporting information

- **Multi-nuclear**: joining spans have equal importance

- 78 types of relations in 16 classes: attribution, background, cause, comparison, condition, contrast, elaboration, enablement, evaluation, explanation, joint, manner-means, topic-comment, summary, temporal, topic-change

- More detail, see: *Building a discourse-tagged corpus in the framework of rhetorical structure theory* by Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski [SIGDIAL 2001]

Discourse parsing

- **Human annotator agreement** on rhetorical relations is not very high
 - 77.0% if 18 relation types are used
 - 71.9% if 110 relation types are used

- **Probabilistic parsing model** [Soricut and Marcu, NAACL 2003]
 - probabilistic chart parser
 - achieves similar performance

- Experiments done on the sentence level.

- Discourse parsing should be useful for, e.g., summarization
Anaphora

Violent protests broke out again in Happyland. According to the country’s department of peace, flowers will be handed out tomorrow. A spokesman of the department announced that they will be blue and green. This will demonstrate the country’s commitment to alleviate the situation.

- A text contains often multiple references to the same objects:
 - flowers — they
 - Happyland — the country
 - department of peace — the department
 - violent protests — the situation
 - handing out flowers — this

- Anaphora resolution (matching the references) is a hard problem

Sentiment detection

- What is the overall sentiment of a text

- Example: movie review
 - is it a recommendation or a negative review?
 - can be framed as a text classification problem
 - see Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales by Bo Pang and Lillian Lee [ACL 2005]

- Similar questions
 - is a text critical of a person?
 - does the text have a bias (political, etc.)?