Empirical Methods in Natural Language Processing Lecture 13 Semantics and discourse

Philipp Koehn

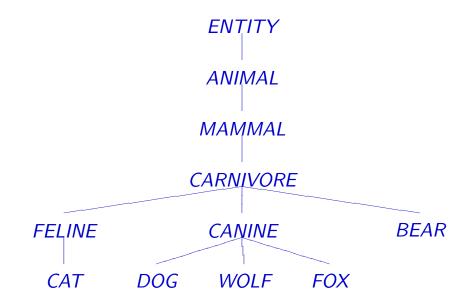
18 February 2008

Philipp Koehn EMNLP Lecture 13 18 February 2008

Semantics

- What is **meaning**?
- What is the meaning of the word *cat*?
 - not a specific cat
 - not all cats
 - $\,\rightarrow\,$ abstract notion of any cat
- Atomic semantic units: concepts
 - example: $cat \rightarrow CAT$

WordNet: an ontology of concepts



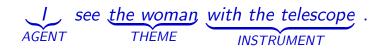
Philipp Koehn EMNLP Lecture 13 18 February 2008

Semantic relationships

- Hypernym / hyponym
 - CAT is-a FELINE
 - basis of hierarchical relationships in WordNet
- Part / whole
 - CAT has-part PAW
 - PAW is-part-of CAT
- Membership
 - FACULTY has-member PROFESSOR
 - PROFESSOR is-member-of FACULTY
- Antonym / opposite
 - LEADER is-opposite-of FOLLOWER

Thematic roles

• Words play semantic roles in a sentence



• Specific verbs typically require **arguments** with specific thematic roles and allow **adjuncts** with specific thematic roles.

Philipp Koehn EMNLP Lecture 13 18 February 2008

Semantic frames

- Complex concepts can be defined by **semantic frames**, whose **slots** are filled by concrete information
- SOCCER-GAME
 - HOME-TEAM: Heart of Midlothian
 - AWAY-TEAM: FC Motherwell
 - SCORE: 3-0
 - TIME-STARTED: 2006-02-18 16:00 GMTLOCATION: Tynecastle Stadium, Edinburgh
- Information extraction: can we fill semantic frames from text?

Source of semantic knowledge

- Semantic knowledge is not directly observable
- Building semantic knowledge bases
 - for instance WordNet, an ontology
 - labor intensive
 - may not contain all information we want, e.g.
 - * pigeon is a typical bird
 - * penguin is not a typical bird
- Can we automatically learn semantics?

Philipp Koehn EMNLP Lecture 13 18 February 2008

Learning semantics

The meaning of a word is its use. Ludwig Wittgenstein, Aphorism 43

- Represent context of a word in a vector
 - → Similar words have similar context vectors
- Example: Google sets http://labs.google.com/sets
 - one meaning of cat
 - enter: cat, dog
 - return: cat, dog, horse, fish, bird, rabbit, cattle, ...
 - another meaning of cat
 - enter: cat, more
 - return: more, cat, ls, rm, mv, cd, cp, ...

Learning prejudices

- Detecting national stereotypes with Google
- Enter: Scots are known to be *

 ⇒ frugal, friendly, generous, thrifty, ...
- Enter: Englishmen are known to be *
 ⇒ prudish, great sports-lovers, people with manners, courteous, cold, ...
- Enter: Germans are known to be *
 ⇒ pathetic, hard-nosed, arrogant, very punctual, fanatical, hard-working, ...

Philipp Koehn EMNLP Lecture 13 18 February 2008

Discourse

- Beyond the sentence level, we are interested in how texts are structured
 - central message of text
 - supporting arguments
 - introduction, conclusion
- ullet Elementary discourse units (EDU) (\sim clauses) are related to each other
- ullet Texts shift in focus o **text segmentation**

Text segmentation

- Some text types have very pronounced topic shifts
 - news broadcasts cover different stories
- Also other long texts may cover multiple topics
 - lectures
 - speeches
 - essays
- Task text segmentation
 - given: text
 - wanted: segmentation into smaller units with different topics

Philipp Koehn EMNLP Lecture 13 18 February 2008

Segmentation by vocabulary change

- At a topic boundary, use of vocabulary changes
- By comparing vocabulary of neighboring text parts, boundaries can be detected
- Example: Stargazers text from Hearst [1994]
 - intro: the search for life in space
 - the moons chemical composition
 - how early proximity of the moon shaped it
 - how the moon helped life evolve on earth
 - improbability of the earth-moon system

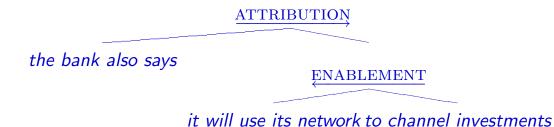
next slide from MIT class 6.864: Natural Language Processing

Sen	tence:	05	10	15	20	25	30	35	40	45	50	55	60	65	70	7!	5 8	30	85	90	95
14	form	1	 1	.11 1	1						 1	1	1	 1	1		1	 1	. — — — . L	1	+
8	scientist				11			1	1			1		1	1	1					1
5	space 11	1	1	1												1					- 1
25	star	1			1								11 2	2 11	11112	1 :	1 1	1	11 11	L11	1
5	binary												11	1		1					1
4	trinary												1	1		1					1
8	astronomer 1				1								1 1			1	1	1	1		- 1
7	orbit	1				1								12	1 1						- 1
6	pull					2		1 1						1	1 1						- 1
16	planet	1	1	1	1			1		1				21 1	11111					1	1
7	galaxy	1										1	L			1	11		1		1
4	lunar			1 1	1		1														- 1
19	life 1	1	1						1	11	1 11	1	1				1	1	1	111	1 1
27	moon		13	1111	1 1	22 21	21	2	21		11	1									- 1
3	move								1	1	1										- 1
7	continent								2	1 1 2	1										- 1
3	shoreline									12	2										- 1
6	time					1			1	1 1	1										1
3	water							11			1										- 1
6	say							1 1		1		11			1						- 1
3	species									1 1	1										1
Sentence:		05	10) 15	20	25	30	35	40	45	50	55	60	65	70	75	5 8	30	85	90	95 l

Philipp Koehn EMNLP Lecture 13 18 February 2008

Rhetorical relations

- Rhetorical Structure Theory (RST): relations between spans of EDUs
- Example:



Philipp Koehn EMNLP Lecture 13 18 February 2008

Types of rhetorical relations

- Mono-nuclear: Nucleus is more salient than satellite, which contains supporting information
- Multi-nuclear: joining spans have equal importance
- 78 types of relations in 16 classes attribution, background, cause, comparison, condition, contrast, elaboration, enablement, evaluation, explanation, joint, manner-means, topic-comment, summary, temporal, topic-change
- More detail, see: Building a discourse-tagged corpus in the framework of rhetorical structure theory by Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski [SIGDIAL 2001]

Philipp Koehn EMNLP Lecture 13 18 February 2008

Discourse parsing

- Human annotator agreement on rhetorical relations is not very high
 - 77.0% if 18 relation types are used
 - 71.9% if 110 relation types are used
- Probabilistic parsing model [Soricut and Marcu, NAACL 2003]
 - probabilistic chart parser
 - achieves similar performance
- Experiments done on the sentence level.
- Discourse parsing should be useful for, e.g., summarization

Anaphora

Violent protests broke out again in Happyland. According to the country's department of peace, flowers will be handed out tomorrow. A spokesman of the department announced that they will be blue and green. This will demonstrate the country's commitment to alleviate the situation.

- A text contains often multiple references to the same objects:
 - flowers they
 - Happyland the country
 - department of peace the department
 - violent protests the situation
 - handing out flowers this
- Anaphora resolution (matching the references) is a hard problem

Philipp Koehn EMNLP Lecture 13 18 February 2008

Sentiment detection

- What is the overall **sentiment** of a text
- Example: *movie review*
 - is it a recommendation or a negative review?
 - can be framed as a text classification problem
 - see Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales by Bo Pang and Lillian Lee [ACL 2005]
- Similar questions
 - is a text critical of a person?
 - does the text have a bias (political, etc.)?