Empirical Methods in Natural Language Processing Lecture 12 Text Classification and Clustering

Philipp Koehn

14 February 2008

Type of learning problems

- *Supervised* learning
 - labeled training data
 - methods: HMM, naive Bayes, maximum entropy, transformation-based learning, decision lists, ...
 - example: language modeling, POS tagging with labeled corpus
- Unsupervised learning
 - labels have to be automatically discovered
 - method: **clustering** (this lecture)

Semi-supervised learning

- Some of the training data is labeled, vast majority is not
- Boostrapping
 - train initial classifier on labeled data
 - label additional data with initial classifier
 - iterate

• Active learning

- train initial classifier with confidence measure
- request from human annotator to label most informative examples

Goals of learning

- **Density estimation**: p(x)
 - learn the distribution of a random variable
 - example: language modeling
- **Classification**: p(c|x)
 - predict correct class (from a finite set)
 - example: part-of-speech tagging, word sense disambiguation
- **Regression**: p(x, y)
 - predicting a function f(x) = y with real-numbered input and output
 - rare in natural languages (words are discrete, not continuous)

Text classification

- Classification problem
- First, supervised methods
 - the usual suspects
 - classification by language modeling
- Then, unsupervised methods
 - clustering

The task

- The task
 - given a set of documents
 - sort them into categories
- Example
 - sorting news stories into: POLITICS, SPORTS, ARTS, etc.
 - classifying job adverts into job types: CLERICAL, TEACHING, ...
 - filtering email into SPAM and NO-SPAM

The usual approach

- Represent document by *features*
 - words
 - bigrams, etc.
 - word senses
 - syntactic relations
- Learn a model that predicts a category using the features
 - naive Bayes $\operatorname{argmax}_{c} p(c) \prod_{i} p(c|f_{i})$
 - maximum entropy $\operatorname{argmax}_{c\frac{1}{Z}}\prod_{i}\lambda_{i}^{f_{i}}$
 - decision/transformation rules $\{f_0 \rightarrow c_j, ..., f_n \rightarrow c_k\}$
- Set-up very similar to *word sense disambiguation*

Language modeling approach

- Collect documents for each class
- Train a language model p_{LM}^c for each class c separately
- Classify a new document d by

 $\mathrm{argmax}_{c}p_{LM}^{c}(d)$

- Intuition: which language model most likely produces the document?
- Effectively uses words and n-gram features

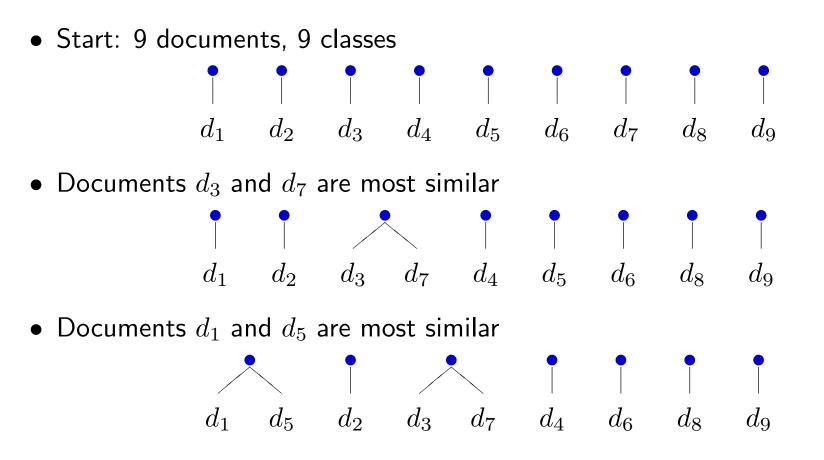
Clustering

- Unsupervised learning
 - *given*: a set of documents
 - wanted: grouping into appropriate classes

• Agglomerative clustering

- group the two most similar documents together
- repeat

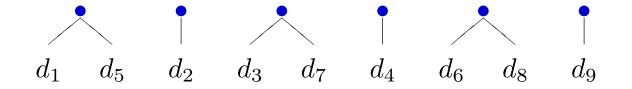
Agglomerative clustering



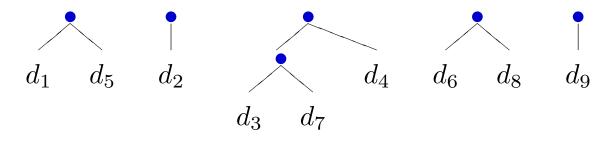
nformation

Agglomerative clustering (2)

• Documents d_6 and d_8 are most similar



• Document d_4 and class $\{d_8, d_6\}$ are most similar

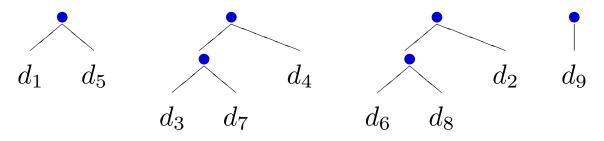


nformation

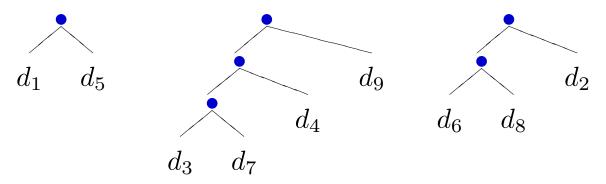
10

Agglomerative clustering (3)

• Document d_2 and class $\{d_6, d_8\}$ are most similar



• Document d_9 and class $\{d_3, d_4, d_7\}$ are most similar



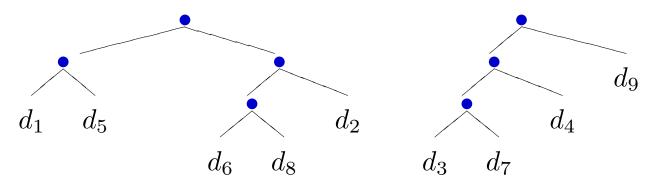
nformation

11

ICS

Agglomerative clustering (4)

• Class $\{d_1, d_5\}$ and class $\{d_2, d_6, d_8\}$ are most similar



• If we stop now, we have two classes

nformatics

12

Similarity

- We loosely used the concept **similarity**
- How do we know how similar two documents are?
- How do we **represent** documents in the first place?

Vector representation of documents

	Manchester	$\langle 1 \rangle$	$\langle 0.04 \rangle$
Documents are represented by a vector of word counts .	United	1	0.04
	won	2	0.08
	2	2	0.08
	_	3	0.12
Example document	1	3	0.12
•	against	2	0.08
Manchester United won 2 – 1 against	Chelsea	1	0.04
Chelsea , Barcelona tied Madrid 1 – 1 ,	,	2	0.08
and Bayern München won 4 – 2 against	Barcelona	1	0.04
	tied	1	0.04
Nürnberg	Madrid	1	0.04
	and	1	0.04
The word counts may be normalized , so	Bayern	1	0.04
	München	1	0.04
all the vector components add up to one.	4	1	0.04
	Nürnberg	$\backslash 1/$	(0.04)

Similarity

• A popular similarity metric for vectors is the cosine

$$\operatorname{sim}(\overrightarrow{x}, \overrightarrow{y}) = \frac{\sum_{i=1}^{m} x_i \times y_i}{\sqrt{\sum_{i=1}^{m} x_i} \times \sum_{i=1}^{m} y_i} = \overrightarrow{x} \cdot \overrightarrow{y}$$

- We also need to define the similarity between
 - a document and a class
 - two classes

nformatics

15

Similarity with classes

- Single link
 - merge two classes based on similarity of their *most* similar members
- Compete link
 - merge two classes based on similarity of their *least* similar members
- Group average
 - define class vector, or **center of class**, as

$$\overrightarrow{c} = \frac{1}{M} \sum_{\overrightarrow{x} \in c} \overrightarrow{x}$$

- compare with other vectors using similarity metric

Additional Considerations

• Stop words

- words such as and and the are very frequent and not very informative
- we may want to ignore them

• Complexity

- at any point in the clustering algorithm, we have to compare every document with every other document
- \rightarrow complexity quadratic with the number of documents $O(n^2)$
- When do we stop?
 - when we have a pre-defined number of classes
 - when the lowest similarity is higher than a pre-defined threshold

Other clustering methods

- **Top-down hierarchical** clustering, or **divisive** clustering
 - start with one class
 - divide up classes that are least coherent

• K-means clustering

- create initial clusters with arbitrary *center of cluster*
- assign documents to the cluster with the closests center
- compute *center of cluster*
- iterate until convergence