Empirical Methods in Natural Language Processing Lecture 9 Parsing (I): Context-free grammars and chart parsing

Philipp Koehn

Philipp Koehn EMNLP Lecture 9 4 February 2008

The path so far

- Originally, we treated language as a sequence of words
 - $\rightarrow \text{ n-gram language models}$
- Then, we introduced the notion of syntactic properties of words
 - \rightarrow part-of-speech tags
- Now, we look at syntactic relations between words
 - \rightarrow syntax trees

A simple sentence

I like the interesting lecture

Philipp Koehn EMNLP Lecture 9 4 February 2008

Part-of-speech tags

I like the interesting lecture PRO VB DET JJ NN

Syntactic relations

I like the interesting lecture PRO VB DET JJ NN

- The adjective interesting gives more information about the noun lecture
- The determiner *the* says something about the noun *lecture*
- The noun *lecture* is the object of the verb *like*, specifying *what* is being liked
- The pronoun I is the subject of the verb like, specifying who is doing the liking

Philipp Koehn EMNLP Lecture 9 4 February 2008

Dependency structure

This can also be visualized as a **dependency tree**:

Dependency structure (2)

The dependencies may also be labeled with the type of dependency

Philipp Koehn EMNLP Lecture 9 4 February 2008

Phrase-structure tree

A popular grammar formalism is **phrase structure grammar** Internal nodes combine leaf nodes into phrases, such as *noun phrases (NP)*

Building phrase-structure trees

- Our task for this week: parsing
 - given: an input sentence with part-of-speech tags
 - wanted: the right syntax tree for it
- Formalism: context-free grammars
 - non-terminal nodes such as NP, S appear inside the tree
 - terminal nodes such as like, lecture appear at the leafs of the tree
 - rules such as NP → DET JJ NN

Philipp Koehn	EMNLP Lecture 9	4 February 2008

Applying the rules

Input	Rule	Output
S	$S \to NP \; VP$	NP VP
NP VP	$NP \to PRO$	PRO VP
PRO VP	PRO → /	/ VP
/ VP	$VP \to VP \; NP$	/ VP NP
/ VP NP	$VP \to VB$	/ VB
/VB NP	$VB \rightarrow \textit{like}$	I like NP
<i>I like</i> NP	$NP \to DET JJ NN$	<i>l like</i> DET JJ NN
<i>l like</i> DET JJ NN	$DET o \mathit{the}$	<i>I like the</i> JJ NN
I like the JJ NN	$JJ o \mathit{interesting}$	I like the interesting NN
I like the interesting NN	NN → <i>lecture</i>	I like the interesting lecture

Recursion

Rules can be applied **recursively**, for example the rule $VP \rightarrow NP \ VP$

Philipp Koehn EMNLP Lecture 9 4 February 2008

Context-free grammars in context

- Chomsky hierarchy of formal languages (terminals in caps, non-terminal lowercase)
 - **regular**: only rules of the form $A \to a, A \to B, A \to Ba$ (or $A \to aB$) Cannot generate languages such as a^nb^n
 - context-free: left-hand side of rule has to be single non-terminal, anything goes on right hand-side. Cannot generate $a^nb^nc^n$
 - context-sensitive: rules can be restricted to a particular context, e.g. $\alpha A\beta \to \alpha aBc\beta$, where α and β are strings of terminal and non-terminals
- Moving up the hierarchy, languages are more expressive and parsing becomes computationally more expensive
- Is natural language context-free?

Why is parsing hard?

Prepositional phrase attachment: Who has the telescope?

Philipp Koehn EMNLP Lecture 9 4 February 2008

Why is parsing hard?

Scope: Is *Jim* also from *Hoboken*?

CYK Parsing

- We have input sentence:
 I like the interesting lecture
- We have a set of context-free rules: $S \rightarrow NP \ VP, \ NP \rightarrow PRO, \ PRO \rightarrow \textit{I}, \ VP \rightarrow VP \ NP, \ VP \rightarrow VB, \ VB \rightarrow \textit{like}, \ NP \rightarrow DET \ JJ \ NN, \ DET \rightarrow \textit{the}, \ JJ \rightarrow, \ NN \rightarrow \textit{lecture}$
- Cocke-Younger-Kasami (CYK) parsing
 - a bottom-up parsing algorithm
 - uses a **chart** to store intermediate result

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example

Initialize chart with the words

I
like
the
interesting
lecture

1
2
3
4
5

Example (2)

Apply first terminal rule PRO \rightarrow I

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example (3)

... and so on ...

Example (4)

Try to apply a non-terminal rule to the first word The only matching rule is $NP \rightarrow PRO$

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example (5)

Recurse: try to apply a non-terminal rule to the first word No rule matches

Example (6)

Try to apply a non-terminal rule to the second word The only matching rule is $VP \rightarrow VB$ No recursion possible, no additional rules match

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example (7)

Try to apply a non-terminal rule to the third word No rule matches

Example (8)

Try to apply a non-terminal rule to the first two words The only matching rule is $S \rightarrow NP VP$ No other rules match for **spans** of two words

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example (9)

One rule matches for a span of three words: $NP \rightarrow DET JJ NN$

Example (10)

One rule matches for a span of four words: $VP \rightarrow VP NP$

Philipp Koehn EMNLP Lecture 9 4 February 2008

Example (11)

One rule matches for a span of five words: $S \rightarrow NP VP$

CYK algorithm for binarized grammars

```
- for all words w_i: // terminal rules

- for all rules A \to w_i: add new chart entry A at span [i,i]

- for length = 1 to sentence length n // non-terminal rules

- for start = 1 to n - (length - 1)

end = start + length - 1

- for middle = start to end - 1: // binary rules

for all non-terminals X in [start, middle]:

for all non-terminals Y in [middle + 1, end]:

for all rules A \to XY:

add new chart entry A at position [start, end]

- for all non-terminals X in [start, end]: // unary rules

for all rules A \to X:

add new chart entry A at position [start, end]
```