Empirical Methods in Natural Language Processing Lecture 8 Tagging (III): Maximum Entropy Models

Philipp Koehn

31 January 2008

POS tagging tools

- Three commonly used, freely available tools for tagging:
 - TnT by Thorsten Brants (2000): Hidden Markov Model http://www.coli.uni-saarland.de/ thorsten/tnt/
 - Brill tagger by Eric Brill (1995): transformation based learning http://www.cs.jhu.edu/~brill/
 - MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
- All have similar performance (\sim 96% on Penn Treebank English)

Probabilities vs. rules

- We examined two supervised learning methods for the tagging task
- HMMs: probabilities allow for *graded decisions*, instead of just yes/no
- Transformation based learning: *more features* can be considered
- We would like to combine both ⇒ maximum entropy models
 - a large number of features can be defined
 - features are weighted by their importance

Features

- Each tagging decision for a word occurs in a specific context
- ullet For tagging, we consider as context the **history** h_i
 - the word itself
 - morphological properties of the word
 - other words surrounding the word
 - previous tags
- We can define a feature f_j that allows us to learn how well a specific aspect of histories h_i is associated with a tag t_i

Features (2)

• We observe in the data patterns such as:

the word like has in 50% of the cases the tag VB

• Previously, in HMM models, this led us to introduce probabilities (as part of the tag sequence model) such as

$$p(VB|like) = 0.5$$

PK EMNLP 31 January 2008

Features (3)

• In a maximum entropy model, this information is captured by a feature

$$f_j(h_i, t_i) = \begin{cases} 1 & \text{if } w_i = like \text{ and } t_i = VB \\ 0 & \text{otherwise} \end{cases}$$

• The importance of a feature f_j is defined by a parameter λ_j

PK EMNLP 31 January 2008

Features (4)

Features may consider morphology

$$f_j(h_i, t_i) = \begin{cases} 1 & \text{if suffix}(w_i) = \text{"ing" and } t_i = VB \\ 0 & \text{otherwise} \end{cases}$$

• Features may consider tag sequences

$$f_j(h_i,t_i) = \begin{cases} 1 & \text{if } t_{i-2} = DET \text{ and } t_{i-1} = NN \text{ and } t_i = VB \\ 0 & \text{otherwise} \end{cases}$$

Features in Ratnaparkhi [1996]

frequent $w_i \mid \overline{w_i = X}$

$$w_i = X$$

rare $w_i \mid X$ is prefix of w_i , $|X| \leq 4$ X is suffix of w_i , $|X| \leq 4$ w_i contains a number $\overline{w_i}$ contains uppercase character w_i contains hyphen

all
$$w_i$$

$$\begin{aligned} t_{i-1} &= X \\ t_{i-2}t_{i-1} &= XY \\ w_{i-1} &= X \\ w_{i-2} &= X \\ w_{i+1} &= X \\ w_{i+2} &= X \end{aligned}$$

Log-linear model

• Features f_j and parameters λ_j are used to compute the probability $p(h_i, t_i)$:

$$p(h_i, t_i) = \prod_j \lambda_j^{f_j(h_i, t_i)}$$

• These types of models are called **log-linear models**, since they can be reformulated into

$$\log p(h_i, t_i) = \sum_{j} f_j(h_i, t_i) \log \lambda_j$$

• There are many learning methods for these models, maximum entropy is just one of them

Conditional probabilities

- We defined a model $p(h_i, t_i)$ for the joint probability distribution for a history h_i and a tag t_i
- Conditional probabilities can be computed straight-forward by

$$p(t_i|h_i) = \frac{p(h_i, t_i)}{\sum_{i'} p(h_i, t_{i'})}$$

PK **EMNLP** 31 January 2008

Tagging a sequence

- We want to tag a sequence $w_1, ..., w_n$
- This can be decomposed into:

$$p(t_1, ..., t_n | w_1, ..., w_n) = \prod_{i=1}^n p(t_i | h_i)$$

- The history h_i consist of all words $w_1, ..., w_n$ and previous tags $t_1, ..., t_{i-1}$
- We cannot use Viterbi search ⇒ heuristic beam search is used (more on beam search in a future lecture on machine translation)

Questions for training

Feature selection

- given the large number of possible features, which ones will be part of the model?
- we do not want redundant features
- we do not want unreliable and rarely occurring features (avoid overfitting)
- Parameter values λ_i
 - λ_i are positive real numbered values
 - how do we set them?

Feature selection

- Feature selection in Ratnaparkhi [1996]
 - Feature has to occur 10 times in the training data
- Other feature selection methods
 - use features with high mutual information
 - add feature that reduces training error most, retrain

Setting the parameter values λ_j : Goals

ullet The **empirical expectation** of a feature f_j occurring in the training data is defined by

$$\tilde{E}(f_j) = \frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i)$$

• The model expectation of that feature occurring is

$$E(f_j) = \sum_{h,t} p(h,t) f_j(h,t)$$

ullet We require that $ilde{E}(f_j) = E(f_j)$

Empirical expectation

Consider the feature

$$f_j(h_i, t_i) = \begin{cases} 1 & \text{if } w_i = like \text{ and } t_i = VB \\ 0 & \text{otherwise} \end{cases}$$

- Computing the empirical expectation $\tilde{E}(f_j)$:
 - if there are 10,000 words (and tags) in the training data
 - ... and the word *like* occurs with the tag VB 20 times
 - ... then

$$\tilde{E}(f_j) = \frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i) = \frac{1}{10000} \sum_{i=1}^{10000} f_j(h_i, t_i) = \frac{20}{10000} = 0.002$$

Model expectation

We defined the model expectation of a feature occurring as

$$E(f_j) = \sum_{h,t} p(h,t) f_j(h,t)$$

- ullet Practically, we cannot sum over all possible histories h and tags t
- Instead, we compute the model expectation of the feature on the training data:

$$E(f_j) \approx \frac{1}{n} \sum_{i=1}^{n} p(t|h_i) f_j(h_i, t)$$

Note: theoretically we have to sum over all t, but $f_j(h_i, t) = 0$ for all but one t

Goals of maximum entropy training

• Recap: we require that $\tilde{E}(f_j) = E(f_j)$, or

$$\frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i) = \frac{1}{n} \sum_{i=1}^{n} p(t|h_i) f_j(h_i, t)$$

- Otherwise we want *maximum entropy*, i.e. we do not want to introduce any additional order into the model (Occam's razor: simplest model is best)
- Entropy:

$$H(p) = \sum_{h,t} p(h,t) \log p(h,t)$$

Improved Iterative Scaling [Berger, 1993]

Input: Feature functions $f_1, ..., f_m$, empirical distribution $\tilde{p}(x, y)$ *Output:* Optimal parameter values $\lambda_1, ..., \lambda_m$

- 1. Start with $\lambda_i = 0$ for all $i \in \{1, 2, ..., n\}$
- 2. Do for each $i \in \{1, 2, ..., n\}$:
 - a. $\Delta \lambda_i = \frac{1}{C} \log \frac{\tilde{E}(f_i)}{E(f_i)}$
 - b. Update $\lambda_i \leftarrow \lambda_i + \Delta \lambda_i$
- 3. Go to step 2 if not all the λ_i have converged

Note: This algorithm requires that $\forall t, h : \sum_i f_i(t, h) = C$, which can be ensured with an additional filler feature