POS tagging tools

• Three commonly used, freely available tools for tagging:
 – **TnT** by Thorsten Brants (2000): Hidden Markov Model
 http://www.coli.uni-saarland.de/~thorsten/tnt/
 – **Brill tagger** by Eric Brill (1995): transformation based learning
 http://www.cs.jhu.edu/~brill/
 – **MXPOST** by Adwait Ratnaparkhi (1996): maximum entropy model

• All have similar performance (~96% on Penn Treebank English)
Probabilities vs. rules

- We examined two supervised learning methods for the tagging task
- HMMs: probabilities allow for *graded decisions*, instead of just yes/no
- Transformation based learning: *more features* can be considered
- We would like to combine both ⇒ *maximum entropy models*
 - a large number of features can be defined
 - features are weighted by their importance

Features

- Each tagging decision for a word occurs in a specific context
- For tagging, we consider as context the *history* h_i
 - the word itself
 - morphological properties of the word
 - other words surrounding the word
 - previous tags
- We can define a feature f_j that allows us to learn how well a specific aspect of histories h_i is associated with a tag t_i
Features (2)

- We observe in the data patterns such as:

 the word like has in 50% of the cases the tag VB

- Previously, in HMM models, this led us to introduce probabilities (as part of the tag sequence model) such as

 \[p(VB|\text{like}) = 0.5 \]

Features (3)

- In a maximum entropy model, this information is captured by a feature

 \[f_j(h_i, t_i) = \begin{cases}
 1 & \text{if } w_i = \text{like and } t_i = VB \\
 0 & \text{otherwise}
\end{cases} \]

- The importance of a feature \(f_j \) is defined by a parameter \(\lambda_j \)
Features (4)

• Features may consider morphology

\[f_j(h_i, t_i) = \begin{cases}
1 & \text{if suffix}(w_i) = "ing" \text{ and } t_i = VB \\
0 & \text{otherwise}
\end{cases} \]

• Features may consider tag sequences

\[f_j(h_i, t_i) = \begin{cases}
1 & \text{if } t_{i-2} = DET \text{ and } t_{i-1} = NN \text{ and } t_i = VB \\
0 & \text{otherwise}
\end{cases} \]

Features in Ratnaparkhi [1996]

<table>
<thead>
<tr>
<th>frequent (w_i)</th>
<th>(w_i = X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rare (w_i)</td>
<td>(X) is prefix of (w_i), (</td>
</tr>
<tr>
<td></td>
<td>(X) is suffix of (w_i), (</td>
</tr>
<tr>
<td></td>
<td>(w_i) contains a number</td>
</tr>
<tr>
<td></td>
<td>(w_i) contains uppercase character</td>
</tr>
<tr>
<td></td>
<td>(w_i) contains hyphen</td>
</tr>
<tr>
<td>all (w_i)</td>
<td>(t_{i-1} = X)</td>
</tr>
<tr>
<td></td>
<td>(t_{i-2}t_{i-1} = XY)</td>
</tr>
<tr>
<td></td>
<td>(w_{i-1} = X)</td>
</tr>
<tr>
<td></td>
<td>(w_{i-2} = X)</td>
</tr>
<tr>
<td></td>
<td>(w_{i+1} = X)</td>
</tr>
<tr>
<td></td>
<td>(w_{i+2} = X)</td>
</tr>
</tbody>
</table>
Log-linear model

- Features f_j and parameters λ_j are used to compute the probability $p(h_i, t_i)$:

$$p(h_i, t_i) = \prod_j^{\lambda_j} f_j^{(h_i, t_i)}$$

- These types of models are called *log-linear models*, since they can be reformulated into

$$\log p(h_i, t_i) = \sum_j f_j(h_i, t_i) \log \lambda_j$$

- There are many learning methods for these models, maximum entropy is just one of them

Conditional probabilities

- We defined a model $p(h_i, t_i)$ for the *joint probability distribution* for a history h_i and a tag t_i

- *Conditional probabilities* can be computed straight-forward by

$$p(t_i | h_i) = \frac{p(h_i, t_i)}{\sum_{t_i'} p(h_i, t_i')}$$
Tagging a sequence

- We want to tag a sequence $w_1, ..., w_n$
- This can be decomposed into:

$$p(t_1, ..., t_n|w_1, ..., w_n) = \prod_{i=1}^{n} p(t_i|h_i)$$

- The history h_i consist of all words $w_1, ..., w_n$ and previous tags $t_1, ..., t_{i-1}$
- We cannot use Viterbi search \Rightarrow heuristic beam search is used (more on beam search in a future lecture on machine translation)

Questions for training

- **Feature selection**
 - given the large number of possible features, which ones will be part of the model?
 - we do not want redundant features
 - we do not want unreliable and rarely occurring features (avoid overfitting)

- **Parameter values λ_j**
 - λ_j are positive real numbered values
 - how do we set them?
Feature selection

- Feature selection in Ratnaparkhi [1996]
 - Feature has to occur 10 times in the training data

- Other feature selection methods
 - use features with high mutual information
 - add feature that reduces training error most, retrain

Setting the parameter values λ_j: Goals

- The empirical expectation of a feature f_j occurring in the training data is defined by
 \[\tilde{E}(f_j) = \frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i) \]

- The model expectation of that feature occurring is
 \[E(f_j) = \sum_{h,t} p(h,t)f_j(h,t) \]

- We require that $\tilde{E}(f_j) = E(f_j)$
Empirical expectation

• Consider the feature

\[f_j(h_i, t_i) = \begin{cases} 1 & \text{if } w_i = \text{like and } t_i = \text{VB} \\ 0 & \text{otherwise} \end{cases} \]

• Computing the empirical expectation \(\tilde{E}(f_j) \):
 – if there are 10,000 words (and tags) in the training data
 – ... and the word \textit{like} occurs with the tag \textit{VB} 20 times
 – ... then

\[
\tilde{E}(f_j) = \frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i) = \frac{1}{10000} \sum_{i=1}^{10000} f_j(h_i, t_i) = \frac{20}{10000} = 0.002
\]

Model expectation

• We defined the model expectation of a feature occurring as

\[E(f_j) = \sum_{h,t} p(h,t)f_j(h,t) \]

• Practically, we cannot sum over all possible histories \(h \) and tags \(t \)

• Instead, we compute the model expectation of the feature on the training data:

\[
E(f_j) \approx \frac{1}{n} \sum_{i=1}^{n} p(t|h_i) f_j(h_i, t)
\]

\textbf{Note:} theoretically we have to sum over all \(t \), but \(f_j(h_i, t) = 0 \) for all but one \(t \)
Goals of maximum entropy training

- Recap: we require that $\hat{E}(f_j) = E(f_j)$, or
 $$\frac{1}{n} \sum_{i=1}^{n} f_j(h_i, t_i) = \frac{1}{n} \sum_{i=1}^{n} p(t|h_i) f_j(h_i, t)$$

- Otherwise we want maximum entropy, i.e. we do not want to introduce any additional order into the model (Occam’s razor: simplest model is best)

- Entropy:
 $$H(p) = \sum_{h,t} p(h,t) \log p(h,t)$$

Improved Iterative Scaling [Berger, 1993]

Input: Feature functions $f_1, ..., f_m$, empirical distribution $\tilde{p}(x, y)$
Output: Optimal parameter values $\lambda_1, ..., \lambda_m$

1. Start with $\lambda_i = 0$ for all $i \in \{1, 2, ..., n\}$

2. Do for each $i \in \{1, 2, ..., n\}$:
 a. $\Delta \lambda_i = \frac{1}{C} \log \frac{\hat{E}(f_i)}{E(f_i)}$
 b. Update $\lambda_i \leftarrow \lambda_i + \Delta \lambda_i$

3. Go to step 2 if not all the λ_i have converged

Note: This algorithm requires that $\forall t, h : \sum_i f_i(t, h) = C$, which can be ensured with an additional filler feature