Outline

1. **Introduction**
 - Information Extraction
 - Named Entity Recognition
 - CoNLL Shared Task
2. **Choices**
3. **Assessment**
Information Extraction

- **Extract information salient to the needs of the users**
 - Information about house prices from real estate magazines
 - Character relations from novels
 - Location of terrorist attacks from newspapers

- **Extract structured data from unstructured or semi structured natural language data, e.g. from newspapers**

- **Task involving Natural Language Understanding and Information Retrieval**

Information Extraction Tasks

- **Named Entity Recognition**
 - Which phrases refer to **what kind of entities**

- **Coreference Resolution**
 - Which phrases refer to the **same entity**

- **Relation Extraction**
 - Which entities are related in **what kind of relationships**

- **Event Extraction**
 - Which events are mentioned with which attributes
Named Entity Recognition

- **Named entity** is an object of interest such as a person, organization, or location
- Identifying word sequences
- Labelling those sequences

Example:
Meg Whitman, CEO of eBay, said in New York…
- Label Meg Whitman as PERSON
- Label eBay as ORGANISATION
- Label New York as LOCATION

CoNLL Shared Task 2003

- Brings together researchers in Computational Natural Language Learning
- Aims at evaluating different Machine Learning approaches
- Gives training, development and test sets for NER in German and English
- Identify entities and classify as PERSON, LOCATION, ORGANISATION and MISC
IOB Scheme in CoNLL

- **Inside**, **Outside**, **Begin**
- For each type of entity there is an I-XXX and a B-XXX tag
- Non-entities are tagged O
- B-XXX only used if two entities of same type next to each other
- Assumes that named entities are non-recursive and don’t overlap

 Example: Meg Whitman CEO of eBay

 I-PER B-PER O O I-ORG

A Graphical Model for NER

- The NER framework covers
 - Features
 - Local classifiers
 - Sequential constraints
Features

- Features are the most important aspect of almost every Machine Learning system
 - Is the word capitalised?
 - Is the word at the start of a sentence?
 - What is the POS tag?
 - Info from gazetteers

- The more useful features you incorporate, the more powerful your learner gets

Local Classifier

Find

\[p(\text{tag}|\text{features}) \]

- Maximum Entropy Classifier (Berger et al. 1996)
- Large Margin approach such as support vector machines (SVMs) (Vapnik 1995)
- Naive Bayes (strong independence assumption)
- Whatever you like
Ensemble Methods

- Take a set of diverse classifiers
- Let them vote on the tag of a single token (or average their probabilistic output)
- Diversity through different feature sets, different learners, different training data (Dietterich 2000)

Sequential Modelling

- Tags interdepend
 \[p(t_1, t_2, t_3 \ldots | f_1, f_2, f_3 \ldots) \neq \prod_i^n p(t_i | f_i) \]
- Could use a model such as:
 \[p(t_1, t_2, t_3 \ldots | f_1, f_2, f_3 \ldots) = p(t_1 | f_1) \prod_{i=2}^n p(t_i | f_i) p(t_i | t_{i-1}) \]
Software

- Use any programming language you want
- Try to find good toolkits
 - Maxent Toolkit of Zhang Lee (very good and fast training)
 - CRF++ framework (supports sequential modelling)
 - Weka (easy to use but memory intensive and slow)
 - SVM light, LibSVM (long training time, usually good performance)

Timetable

20 & 21/02 Presentation of the results for your baseline system

16/03 Hand in your paper and code!
Assessment Criteria

- Quality of paper
 - Structure
 - Use of literature
 - Error Analysis
- Performance of your system
- Creativity