Empirical Methods in Natural Language Processing Lecture 6 Tagging (II): Transformation-Based Learning and Maximum Entropy Models

Philipp Koehn

24 January 2008

EMNLP

Tagging as supervised learning

- Tagging is a supervised learning problem
 - given: some annotated data (words annotated with POS tags)
 - build model (based on features, i.e. representation of example)
 - predict unseen data (POS tags for words)
- Issues in supervised learning
 - there is no data like more data
 - feature engineering: how best represent the data
 - overfitting to the training data?
- There are many algorithms for supervised learning (naive Bayes, decision trees, maximum entropy, neural networks, support vector machines, ...)

School of

One tagging method: Hidden Markov Models

- HMMs make use of two conditional probability distributions
 - tag sequence model $p(t_n|t_{n-2}, t_{n-1})$
 - tag-word predicition model $p(w_n|t_n)$
- Given these models, we can find the best sequence of tags for a sentence using the Viterbi algorithm

How good is HMM tagging?

- Labeling a sequence is very fast
- Viterbi algorithm outputs best label sequence (previous tags affect labeling of next tag), not just best tag for each word in isolation
- It is easy to get 2nd best sequence, 3rd best sequence, etc.
- But: uses only a *very small window* around word (*n* previous tags)

4 informatics

More features

• Consider a *larger window*

w_{n-4}	w_{n-3}	w_{n-2}	w_{n-1}	w_n	w_{n+1}	w_{n+2}	w_{n+3}	w_{n+4}
t_{n-4}	t_{n-3}	t_{n-2}	t_{n-1}	t_n	t_{n+1}	t_{n+2}	t_{n+3}	t_{n+4}

- Examples for useful features
 - if one of the previous tags is MD, then VB is likelier than VBP (basic verb form instead of verb in singular present)
 - if next tag is JJ, then RBR is likelier than JJR (adverb instead of adjective)

More features (2)

- Lexical features
 - if one of the previous tags is *not*, then VB is likelier than VBP
- Morphological features
 - if word ends in -*tion* it is most likely an NN
 - if word ends in -ly it is most likely an adverb

Using additional features

• Using more features in a conditional probability distribution?

 $p(t_i|w_i, f_0, \dots, f_n)$

- ⇒ sparse data problems (insufficient statistics for reliable estimation of the distribution)
 - Idea: First apply HMM, then fix errors with additional features

Applying the model to training data

- We can use the HMM tagger to tag the *training data*
- Then, we can compare *predicted tags* to *true tags*

words:	the	old	man	the	boat
predicted:	DET	JJ	NN	DET	NN
true tag:	DET	NN	VB	DET	NN

- How can we fix these errors? Possible transformation rules:
 - change NN to VB if no verb in sentence
 predicted: DET JJ VB DET NN
 - change JJ to NN if followed by VB
 predicted: DET NN VB DET NN

Transformation based learning

- First, baseline tagger
 - most frequent tag for word: $\operatorname{argmax}_t p(t|w)$
 - Hidden Markov Model tagger
- Then apply transformations that fix the errors
 - go through the sequence word by word
 - if a feature is present in a current example,
 - \rightarrow apply rule (change tag)

Learning transformations

- Given: words with their true tags
- Tag sentence with baseline tagger
- Repeat
 - find transformation that minimizes error
 - apply transformation to sentence
 - add transformation to list
- Output: ordered list of transformations

Applying the learned transformations

- Given: a new sentence that we want to tag
- Tag words with baseline tagger
- For each transformation rule (in the sequence they were learned):
 - For each word (in sentence order):
 - \cdot apply transformation, if it matches
- Output: tags

11 informatics

Goal: minimizing error

- We need some metric to measure the error
- Here: number of wrongly assigned tags

$$error(D, M) = 1 - \frac{\sum_{i=1}^{N} \delta(t_i^{predicted}, t_i)}{N}$$

- General considerations for **error functions**:
 - Some errors are more costly than others
 - Detecting *cancer*, if *healthy* vs. detecting *healthy* when *cancer*
 - Sometimes error is difficult to assess (machine translation output different from human translation may be still correct)

Overfitting

- It may be possible to fix *all* errors in training
- The last transformations learned may fix only one error each
- Transformations that work in training may not work elsewhere, or may even be generally harmful
- To avoid **overfitting**: stop early

Generative modeling vs. discriminative training

- HMMs are an example for **generative modeling**
 - a model M is created that predicts the training data D
 - the model is broken up into smaller steps
 - for each step, a probability distribution is learned
 - model is optimized on p(D|M), how well it predicts the data
- Transformation-based learning is an example for **discriminative training**
 - a method M is created to predict the training data D
 - it is improved by reducing prediction error
 - look for features that *discriminate* between faulty predictions and truth
 - model is optimized on error(M, D), also called the loss function

Probabilities vs. rules

- HMMs: probabilities allow for *graded decisions*, instead of just yes/no
- Transformation based learning: *more features* can be considered
- We would like to combine both
- ⇒ Maximum Entropy models

Maximum Entropy

- Each example (here: word w) is represented by a set of features $\{f_i\}$, here:
 - the word itself
 - morphological properties of the word
 - other words and tags surrounding the word
- The task is the classify the word into a class c_j (here: the POS tag)
- How well a feature f_i predicts a class c_j is defined by a parameter $\alpha(f_i, c_j)$
- Maximum entropy model:

$$p(c_j|w) = \prod_{f_i \in w} \alpha(f_i, c_j)$$

Maximum Entropy training

- Feature selection
 - given the large number of possible features, which ones will be part of the model?
 - we do not want unreliable and rarely occurring features (avoid overfitting)
 - good features help us to reduce the number of classification errors
- Setting the parameter values $\alpha(f_i, c_j)$
 - $\alpha(f_i, c_j)$ are real numbered values, similar to probabilities
 - we want to ensure that the expected co-occurrence of features and classes matches between the training data and the model
 - otherwise we want to have no bias in the model (maintain *maximum entropy*)
 - training algorithm: **generalized iterative scaling**

POS tagging tools

- Three commonly used, freely available tools for tagging:
 - **TnT** by Thorsten Brants (2000): Hidden Markov Model http://www.coli.uni-saarland.de/ thorsten/tnt/
 - Brill tagger by Eric Brill (1995): transformation based learning http://www.cs.jhu.edu/~brill/
 - MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
- All have similar performance (\sim 96% on Penn Treebank English)