Tagging as supervised learning

- Tagging is a **supervised learning problem**
 - given: some annotated data (words annotated with POS tags)
 - build model (based on **features**, i.e. representation of example)
 - predict unseen data (POS tags for words)

- Issues in supervised learning
 - there is no data like more data
 - feature engineering: how best represent the data
 - overfitting to the training data?

- There are many algorithms for supervised learning (naive Bayes, decision trees, maximum entropy, neural networks, support vector machines, ...)

Empirical Methods in Natural Language Processing
Lecture 6
Tagging (II): Transformation-Based Learning and Maximum Entropy Models

Philipp Koehn

School of Informatics

24 January 2008
One tagging method: Hidden Markov Models

- HMMs make use of two conditional probability distributions
 - tag sequence model $p(t_n|t_{n-2}, t_{n-1})$
 - tag-word prediction model $p(w_n|t_n)$

- Given these models, we can find the best sequence of tags for a sentence using the Viterbi algorithm

How good is HMM tagging?

- Labeling a sequence is very fast

- Viterbi algorithm outputs best label sequence (previous tags affect labeling of next tag), not just best tag for each word in isolation

- It is easy to get 2nd best sequence, 3rd best sequence, etc.

- But: uses only a very small window around word (n previous tags)
More features

• Consider a *larger window*

<table>
<thead>
<tr>
<th>w_{n-4}</th>
<th>w_{n-3}</th>
<th>w_{n-2}</th>
<th>w_{n-1}</th>
<th>w_n</th>
<th>w_{n+1}</th>
<th>w_{n+2}</th>
<th>w_{n+3}</th>
<th>w_{n+4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{n-4}</td>
<td>t_{n-3}</td>
<td>t_{n-2}</td>
<td>t_{n-1}</td>
<td>t_n</td>
<td>t_{n+1}</td>
<td>t_{n+2}</td>
<td>t_{n+3}</td>
<td>t_{n+4}</td>
</tr>
</tbody>
</table>

• Examples for useful features

 – if one of the previous tags is *MD*, then *VB* is likelier than *VBP* (basic verb form instead of verb in singular present)

 – if next tag is *JJ*, then *RBR* is likelier than *JJR* (adverb instead of adjective)

More features (2)

• Lexical features

 – if one of the previous tags is *not*, then *VB* is likelier than *VBP*

• Morphological features

 – if word ends in *-tion* it is most likely an *NN*

 – if word ends in *-ly* it is most likely an adverb
Using additional features

• Using more features in a conditional probability distribution?

\[p(t_i|w_i, f_0, ..., f_n) \]

⇒ sparse data problems
 (insufficient statistics for reliable estimation of the distribution)

• Idea: First apply HMM, then fix errors with additional features

Applying the model to training data

• We can use the HMM tagger to tag the training data

 predicted: DET JJ NN DET NN
ture tag: DET NN VB DET NN

• How can we fix these errors? Possible transformation rules:
 – change \textit{NN} to \textit{VB} if no verb in sentence
 predicted: DET JJ VB DET NN
 – change \textit{JJ} to \textit{NN} if followed by \textit{VB}
 predicted: DET NN VB DET NN
Transformation based learning

• First, **baseline tagger**
 – most frequent tag for word: \(\arg \max_t p(t|w) \)
 – Hidden Markov Model tagger

• Then apply transformations that fix the errors
 – go through the sequence word by word
 – if a feature is present in a current example,
 → apply rule (change tag)

Learning transformations

• Given: words with their true tags

• Tag sentence with baseline tagger

• Repeat
 – find transformation that minimizes error
 – apply transformation to sentence
 – add transformation to list

• Output: ordered list of transformations
Applying the learned transformations

• Given: a new sentence that we want to tag

• Tag words with baseline tagger

• For each transformation rule (in the sequence they were learned):
 – For each word (in sentence order):
 · apply transformation, if it matches

• Output: tags

Goal: minimizing error

• We need some metric to measure the error

• Here: number of wrongly assigned tags

\[
\text{error}(D, M) = 1 - \frac{\sum_{i=1}^{N} \delta(t_{i}^{\text{predicted}}, t_{i})}{N}
\]

• General considerations for error functions:
 – Some errors are more costly than others
 – Detecting cancer, if healthy vs. detecting healthy when cancer
 – Sometimes error is difficult to assess (machine translation output different from human translation may be still correct)
Overfitting

- It may be possible to fix all errors in training
- The last transformations learned may fix only one error each
- Transformations that work in training may not work elsewhere, or may even be generally harmful
- To avoid overfitting: stop early

Generative modeling vs. discriminative training

- HMMs are an example for generative modeling
 - a model M is created that predicts the training data D
 - the model is broken up into smaller steps
 - for each step, a probability distribution is learned
 - model is optimized on $p(D|M)$, how well it predicts the data
- Transformation-based learning is an example for discriminative training
 - a method M is created to predict the training data D
 - it is improved by reducing prediction error
 - look for features that discriminate between faulty predictions and truth
 - model is optimized on error(M,D), also called the loss function
Probabilities vs. rules

- HMMs: probabilities allow for *graded decisions*, instead of just yes/no
- Transformation based learning: *more features* can be considered
- We would like to combine both

⇒ *Maximum Entropy models*

Maximum Entropy

- Each example (here: word w) is represented by a set of features $\{f_i\}$, here:
 - the word itself
 - morphological properties of the word
 - other words and tags surrounding the word
- The task is the classify the word into a class c_j (here: the POS tag)
- How well a feature f_i predicts a class c_j is defined by a parameter $\alpha(f_i, c_j)$
- Maximum entropy model:

$$p(c_j|w) = \prod_{f_i \in w} \alpha(f_i, c_j)$$
Maximum Entropy training

• Feature selection
 – given the large number of possible features, which ones will be part of the model?
 – we do not want unreliable and rarely occurring features (avoid overfitting)
 – good features help us to reduce the number of classification errors

• Setting the parameter values $\alpha(f_i, c_j)$
 – $\alpha(f_i, c_j)$ are real numbered values, similar to probabilities
 – we want to ensure that the expected co-occurrence of features and classes matches between the training data and the model
 – otherwise we want to have no bias in the model (maintain maximum entropy)
 – training algorithm: generalized iterative scaling

POS tagging tools

• Three commonly used, freely available tools for tagging:
 http://www.coli.uni-saarland.de/thorsten/tnt/
 – Brill tagger by Eric Brill (1995): transformation based learning
 http://www.cs.jhu.edu/~brill/
 – MXPOST by Adwait Ratnaparkhi (1996): maximum entropy model

• All have similar performance (\sim96% on Penn Treebank English)