Parts of Speech

• **Open class words** (or content words)
 – nouns, verbs, adjectives, adverbs
 – mostly content-bearing: they refer to objects, actions, and features in the world
 – *open* class, since there is no limit to what these words are, new ones are added all the time (*email*, *website*).

• **Close class words**
 – pronouns, determiners, prepositions, connectives, ...
 – there is a limited number of these
 – mostly functional: to tie the concepts of a sentence together
Parts of Speech (2)

- There are about 30-100 parts of speech
 - distinguish between names and abstract nouns?
 - distinguish between plural noun and singular noun?
 - distinguish between past tense verb and present tense word?

- Identifying the parts of speech is a first step towards syntactic analysis

Ambiguous words

- For instance: *like*
 - verb: *I like the class.*
 - preposition: *He is like me.*

- Another famous example: *Time flies like an arrow*

- Most of the time, the local context disambiguated the part of speech
Part-of-speech tagging

- Task: Given a text of English, identify the parts of speech of each word

- Example

 - Input: Word sequence
 Time flies like an arrow

 - Output: Tag sequence
 Time/NN flies/VB like/P an/DET arrow/NN

- What will help us to tag words with their parts-of-speech?

Relevant knowledge for POS tagging

- The word itself

 - Some words may only be nouns, e.g. arrow

 - Some words are ambiguous, e.g. like, flies

 - Probabilities may help, if one tag is more likely than another

- Local context

 - two determiners rarely follow each other

 - two base form verbs rarely follow each other

 - determiner is almost always followed by adjective or noun
Bayes rule

- We want to find the best part-of-speech tag sequence T for a sentence S:

$$\arg\max_T p(T|S)$$

- Bayes rule gives us:

$$p(T|S) = \frac{p(S|T) p(T)}{p(S)}$$

- We can drop $p(S)$ if we are only interested in $\arg\max_T$:

$$\arg\max_T p(T|S) = \arg\max_T p(S|T) p(T)$$

Decomposing the model

- The mapping $p(S|T)$ can be decomposed into

$$p(S|T) = \prod_i p(w_i|t_i)$$

- $p(T)$ could be called a part-of-speech language model, for which we can use an n-gram model:

$$p(T) = p(t_1) p(t_2|t_1) p(t_3|t_1,t_2) \ldots p(t_n|t_{n-2},t_{n-1})$$

- We can estimate $p(S|T)$ and $p(T)$ with maximum likelihood estimation (and maybe some smoothing)
Hidden Markov Model (HMM)

- The model we just developed is a Hidden Markov Model

- Elements of an HMM model:
 - a set of states (here: the tags)
 - an output alphabet (here: words)
 - intitial state (here: beginning of sentence)
 - state transition probabilities (here: $p(t_n|t_{n-2}, t_{n-1})$)
 - symbol emission probabilities (here: $p(w_i|t_i)$)

Graphical representation

- When tagging a sentence, we are walking through the state graph:

- State transition probabilities: $p(t_n|t_{n-1})$
Graphical representation (2)

- At each state we emit a word:

 ![Graphical Representation](image)

- Symbol emission probabilities: $p(w_i|t_i)$

Search for the best tag sequence

- We have defined a model, but how do we use it?
 - given: word sequence
 - wanted: tag sequence

- If we consider a specific tag sequence, it is straight-forward to compute its probability

 $$p(S|T) \cdot p(T) = \prod_i p(w_i|t_i) \cdot p(t_i|t_{i-2}, t_{i-1})$$

- Problem: if we have on average c choices for each of the n words, there are c^n possible tag sequences, maybe too many to efficiently evaluate
Walking through the states

- First, we go to state *NN* to emit *time*:

```
  VB
  NN
  DET
  IN
```

Walking through the states (2)

- Then, we go to state *VB* to emit *flies*:

```
  VB
  NN
  DET
  IN
```

```
  VB
  NN
  DET
  IN
```

```
  time
  flies
```
Walking through the states (3)

- Of course, there are many possible paths:

Viterbi algorithm

- Intuition: Since state transition out of a state only depend on the current state (and not previous states), we can record for each state the optimal path

- We record:
 - cheapest cost to state j at step s in $\delta_j(s)$
 - backtrace from that state to best predecessor $\psi_j(s)$

- Stepping through all states at each time steps allows us to compute
 - $\delta_j(s + 1) = \max_{1 \leq i \leq N} \delta_i(s) p(t_i | t_j) p(w_s | t_j)$
 - $\psi_j(s + 1) = \arg\max_{1 \leq i \leq N} \delta_i(s) p(t_i | t_j) p(w_s | t_j)$

- Best final state is $\arg\max_{1 \leq i \leq N} \delta_i(S + 1)$, we can backtrack from there
Other tagging tasks

- A number of problems can be framed as tagging problems:

 - **BaseNP chunking:** for text processing purposes it is useful to detect base noun phrases that correspond to concepts, e.g. *department of defense*

 - **Named entity recognition:** it may also be useful to find names of persons, organizations, etc. in the text, e.g. *Tony Blair*

 - **Accent restoration:** When keyboards lack the proper keys, it is common to not write the accents in Spanish or French. We may want to restore them.

 - **Case restoration:** If we just get lowercased text, we may want to restore proper casing, e.g. *the river Thames*

BaseNP chunking

- Task: find basic noun phrases (facilitates parsing, information extraction)

- Example: *the student* said *the exam question* is hard

- Three tags
 - B = beginning of baseNP
 - I = continuing baseNP (internal)
 - O = other word

- Example: *the/B student/I said/O the/B exam/I question/I is/O hard/O*

- Tagging task: assign tags (B, I, O) to each word