Empirical Methods in Natural Language Processing Lecture 4 Language Modeling (II): Smoothing and Back-Off

Philipp Koehn

17 January 2008

17 January 2008

Language Modeling Example

	there is a big house		
• Training set	i buy a house		
	they buy the new house		

• Model
$$\begin{array}{c|cccc} p(big|a) = 0.5 & p(is|there) = 1 & p(buy|they) = 1 \\ p(house|a) = 0.5 & p(buy|i) = 1 & p(a|buy) = 0.5 \\ p(new|the) = 1 & p(house|big) = 1 & p(the|buy) = 0.5 \\ p(a|is) = 1 & p(house|new) = 1 & p(they| < s >) = .333 \\ \end{array}$$

• Test sentence S: they buy a big house

•
$$p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

Informatics

Evaluation of language models

- We want to evaluate the quality of language models
- A good language model gives a high probability to real English
- We measure this with cross entropy and perplexity

Cross-entropy

• Average entropy of each word prediction

• Example:
$$p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$$

 $H(p,m) = -\frac{1}{5} \log p(S)$
 $= -\frac{1}{5} (\underbrace{\log 0.333}_{they} + \underbrace{\log 1}_{buy} + \underbrace{\log 0.5}_{a} + \underbrace{\log 0.5}_{big} + \underbrace{\log 1}_{house})$
 $= -\frac{1}{5} (\underbrace{-1.586}_{they} + \underbrace{0}_{buy} + \underbrace{-1}_{a} + \underbrace{-1}_{big} + \underbrace{0}_{house}) = 0.7173$

Informatics

anformatics

Perplexity

• **Perplexity** is defined as

$$PP = 2^{H(p,m)}$$

= $2^{-\frac{1}{n}\sum_{i=1}^{n} \log m(w_n|w_1,...,w_{n-1})}$

- In out example $H(m, p) = 0.7173 \implies PP = 1.6441$
- Intuitively, perplexity is the average number of choices at each point (weighted by the model)
- Perplexity is the most common measure to evaluate language models

5 informatics

Perplexity example

prediction	$p_{\scriptscriptstyle \mathrm{LM}}$	$-\mathrm{log}_2p_{ ext{\tiny LM}}$
$p_{\text{LM}}(i <\!\!s\!>)$	0.109043	3.197
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{would} {<}s{>}i)$	0.144482	2.791
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{\textit{like}} \mathit{i} \mathit{would})$	0.489247	1.031
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{to} \mathit{would} \mathit{like})$	0.904727	0.144
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{commend} \mathit{like to})$	0.002253	8.794
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{the} \mathit{to commend})$	0.471831	1.084
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{rapporteur} \mathit{commend} \mathit{the})$	0.147923	2.763
$p_{\scriptscriptstyle\mathrm{LM}}(\mathit{on} \mathit{the\ rapporteur})$	0.056315	4.150
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{his} \mathit{rapporteur} \mathit{on})$	0.193806	2.367
$p_{\scriptscriptstyle \mathrm{LM}}(\mathit{work} \mathit{on}\ \mathit{his})$	0.088528	3.498
$p_{\scriptscriptstyle \mathrm{LM}}(. \mathit{his work})$	0.290257	1.785
$p_{\scriptscriptstyle \mathrm{LM}}(<\!\!/s\!\!>\!\! \mathit{work} $.)	0.999990	0.000
	average	2.633671

	Ľ			unicic	
word		unigram	bigram	trigram	4-gram
i		6.684	3.197	3.197	3.197
would	1	8.342	2.884	2.791	2.791
like		9.129	2.026	1.031	1.290
to		5.081	0.402	0.144	0.113
comme	nd	15.487	12.335	8.794	8.633
the		3.885	1.402	1.084	0.880
rapport	eur	10.840	7.319	2.763	2.350
on		6.765	4.140	4.150	1.862
his		10.678	7.316	2.367	1.978
work		9.993	4.816	3.498	2.394
		4.896	3.020	1.785	1.510
	>	4.828	0.005	0.000	0.000
averag	e	8.051	4.072	2.634	2.251
perplex	ity	265.136	16.817	6.206	4.758

Perplexity for LM of different order

Recap from last lecture

- If we estimate probabilities solely from counts, we give probability 0 to unseen events (bigrams, trigrams, etc.)
- One attempt to address this was with add-one smoothing.

Add-one smoothing: results

Church and Gale (1991a) experiment: 22 million words training, 22 million words testing, from same domain (AP news wire), counts of bigrams:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (add one)
0	0.000027	0.000132
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so many, they use up so much probability mass that hardly any is left.

Deleted estimation: results

• Much better:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (Good Turing)
0	0.000027	0.000037
1	0.448	0.396
2	1.25	1.24
3	2.24	2.23
4	3.23	3.22
5	4.21	4.22

• Still overestimates unseen bigrams (why?)

Good-Turing discounting

- Method based on the assumption of binomial distribution of frequencies.
- Translate real counts r for words with adjusted counts r^* :

$$r^* = (r+1)\frac{N_{r+1}}{N_r}$$

 N_r is the *count of counts*: number of words with frequency r.

- The probability mass reserved for unseen events is N_1/N .
- For large r (where N_{r-1} is often 0), so various other methods can be applied (don't adjust counts, curve fitting to linear regression). See Manning+Schütze for details.

Good-Turing discounting: results

• Almost perfect:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (Good Turing)
0	0.000027	0.000027
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24
5	4.21	4.22

Is smoothing enough?

• If two events (bigrams, trigrams) are both seen with the same frequency, they are given the same probability.

n-gram	count
scottish beer is	0
scottish beer green	0
beer is	45
beer green	0

• If there is not sufficient evidence, we may want to **back off** to lower-order n-grams

Combining estimators

- We would like to use high-order n-gram language models
- ... but there are many ngrams with count 0.
- \rightarrow Linear interpolation p_{li} of estimators p_n of different order n:

$$p_{li}(w_n | w_{n-2}, w_{n-1}) = \lambda_1 p_1(w_n) + \lambda_2 p_2(w_n | w_{n-1}) + \lambda_3 p_1(w_n | w_{n-2}, w_{n-1})$$

• $\lambda_1 + \lambda_2 + \lambda_3 = 1$

14 informatics

Recursive Interpolation

• Interpolation can also be defined recursively

$$p_i(w_n | w_{n-2}, w_{n-1}) = \lambda(w_{n-2}, w_{n-1}) \quad p(w_n | w_{n-2}, w_{n-1}) + (1 - \lambda(w_{n-2}, w_{n-1})) \quad p_i(w_n | w_{n-1})$$

- How do we set the $\lambda(w_{n-2}, w_{n-1})$ parameters?
 - consider $count(w_{n-2}, w_{n-1})$
 - for higher counts of history:
 - \rightarrow higher values of $\lambda(w_{n-2}, w_{n-1})$
 - $\rightarrow\,$ less probability mass reserved for unseen events

Witten-Bell Smoothing

- Count of history may not be fully adequate
 - constant occurs 993 in Europarl corpus, 415 different words follow
 - spite occurs 993 in Europarl corpus, 9 different words follow
- Witten-Bell smoothing uses diversity of history
- Reserved probability for unseen events:

-
$$1 - \lambda(\text{constant}) = \frac{415}{415 + 993} = 0.295$$

- $1 - \lambda(\text{spite}) = \frac{9}{9 + 993} = 0.009$

Back-off

• Another approach is to back-off to lower order n-gram language models

$$p_{bo}(w_n|w_{n-2}, w_{n-1}) = \begin{cases} \alpha(w_n|w_{n-2}, w_{n-1}) \\ \text{if } count(w_{n-2}, w_{n-1}, w_n) > 0 \\ \gamma(w_{n-2}, w_{n-1}) p_{bo}(w_n|w_{n-1}) \\ \text{otherwise} \end{cases}$$

- Each trigram probability distribution is changed to a function α that reserves some probability mass for unseen events: $\sum_{w} \alpha(w_n | w_{n-2}, w_{n-1}) < 1$
- The remaining probability mass is used in the weight $\gamma(w_{n-2}, w_{n-1})$, which is given to the back-off path.

nformation

17 informatics

Back-off with Good Turing Discounting

• Good Turing discounting is used for all positive counts

	count	p	GT count	$ \alpha$
p(big a)	3	$\frac{3}{7} = 0.43$	2.24	$\frac{2.24}{7} = 0.32$
p(house a)	3	$\frac{3}{7} = 0.43$	2.24	$\frac{2.24}{7} = 0.32$
p(new a)	1	$\frac{1}{7} = 0.14$	0.446	$\frac{0.446}{7} = 0.06$

- 1-(0.32+0.32+0.06)=0.30 is left for back-off $\gamma(\mathbf{a})$
- Note: actual value for γ is slightly higher, since the predictions of the lower-order model to seen events at this level are not used.

Absolute Discounting

• Subtract a fixed number D from each count

$$\alpha(w_n | w_1, ..., w_{n-1}) = \frac{c(w_1, ..., w_n) - D}{\sum_w c(w_1, ..., w_{n-1}, w)}$$

• Typical counts 1 and 2 are treated differently

Consider Diversity of Histories

- Words differ in the number of different history they follow
 - foods, indicates, providers occur 447 times each in Europarl
 - york also occurs 447 times in Europarl
 - but: york almost always follows new
- When building a unigram model for back-off
 - what is a good value for $p({\rm foods})$?
 - what is a good value for $p({\rm york})$?

Kneser-Ney Smoothing

- Currently most popular smoothing method
- Combines
 - absolute discounting
 - considers diversity of predicted words for back-off
 - considers diversity of histories for lower order n-gram models
 - interpolated version: always add in back-off probabilities

Perplexity for different language models

• Trained on English Europarl corpus, ignoring trigram and 4-gram singletons

Smoothing method	bigram	trigram	4-gram
Good-Turing	96.2	62.9	59.9
Witten-Bell	97.1	63.8	60.4
Modified Kneser-Ney	95.4	61.6	58.6
Interpolated Modified Kneser-Ney	94.5	59.3	54.0

Other methods in language modeling

- Language modeling is still an active field of research
- There are many back-off and interpolation methods
- Skip n-gram models: back-off to $p(w_n|w_{n-2})$
- Factored language models: back-off to word stems, part-of-speech tags
- Syntactic language models: using parse trees
- Language models trained on billions and trillions of words