Empirical Methods in Natural Language Processing Lecture 3

Language Modeling (I): From counts to smoothing

Philipp Koehn

14 January 2008

ΡK

EMNLP

14 January 2008

informatics

Language models

- Language models answer the question: How likely is a string of English words good English?
 - the house is big \rightarrow good
 - the house is $xxl \rightarrow$ worse
 - house big is the \rightarrow bad
- Uses of language models
 - Speech recognition
 - Machine translation
 - Optical character recognition
 - Handwriting recognition
 - Language detection (English or Finnish?)

Applying the chain rule

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many good English sentences will not have been seen before.
- \rightarrow Decomposing p(W) using the chain rule:

 $p(w_1, w_2, w_3, ..., w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_1, w_2) ... p(w_n|w_1, w_2, ... w_{n-1})$

ΡK

EMNLP

14 January 2008

School of

Markov chain

• Markov assumption:

- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
- $\rightarrow k$ th order Markov model
- For instance 2-gram language model:

 $p(w_1, w_2, w_3, ..., w_n) = p(w_1) p(w_2|w_1) p(w_3|w_2)...p(w_n|w_{n-1})$

• What is conditioned on, here w_{n-1} is called the **history**

Estimating n-gram probabilities

• We are back in comfortable territory: maximum likelihood estimation

 $p(w_2|w_1) = \frac{count(w_1, w_2)}{count(w_1)}$

- Collect counts over a large text corpus
- Millions to billions of words are easy to get

ΡK

EMNLP

14 January 2008

School of

Size of the model

- For each n-gram (e.g. the big house), we need to store a probability
- Assuming 20,000 distinct words

Model	Max. number of parameters
Oth order (unigram)	20,000
1st order (bigram)	$20,000^2 = 400$ million
2nd order (trigram)	$20,000^3 = 8$ trillion
3rd order (4-gram)	$20,000^4 = 160$ quadrillion

• In practice, 3-gram LMs are typically used

Size of model: practical example

• Trained on 10 million sentences from the Gigaword corpus (text collection from New York Times, Wall Street Journal, and news wire sources), about 275 million words.

1-gram	716,706
2-gram	12,537,755
3-gram	22,174,483

• Worst case for number of distinct n-grams is linear with the corpus size.

ΡK

EMNLP

14 January 2008

School of

How good is the LM?

- A good model assigns a text of real English a high probability
- This can be also measured with cross entropy:

$$H(W) = \frac{1}{n} \log p(W_1^n)$$

• Or, perplexity

$$perplexity(W) = 2^{H(W)}$$

Training set and test set

- We learn the language model from a **training set**, i.e. we collect statistics for n-grams over that sample and estimate the conditional n-gram probabilities.
- We evaluate the language model on a hold-out test set
 - much smaller than training set (thousands of words)
 - not part of the training set!
- We measure perplexity on the test set to gauge the quality of our language model.

ΡK

EMNLP

14 January 2008

informatics

Example: unigram

	there is a big house
• Training set	i buy a house
	they buy the new house

N4 I I	p(there) = 0.0714	p(is) = 0.0714	p(a) = 0.1429
	p(big) = 0.0714	p(house) = 0.2143	p(i) = 0.0714
 Model 	p(buy) = 0.1429 p(new) = 0.0714	p(they) = 0.0714	p(the) = 0.0714

- Test sentence S: they buy a big house
- $p(S) = \underbrace{0.0714}_{they} \times \underbrace{0.1429}_{buy} \times \underbrace{0.0714}_{a} \times \underbrace{0.1429}_{big} \times \underbrace{0.2143}_{house} = 0.0000231$

Example: bigram

	there is a big house	
• Training set	i buy a house	
	they buy the new house	

	p(big a) = 0.5	p(is there) = 1	p(buy they) = 1
 Model 	p(house a) = 0.5	p(buy i) = 1	p(a buy) = 0.5
	p(new the) = 1	p(house big) = 1	p(the buy) = 0.5
	p(a is) = 1	p(house new) = 1	p(they < s >) = .333

- Test sentence S: they buy a big house
- $p(S) = \underbrace{0.333}_{they} \times \underbrace{1}_{buy} \times \underbrace{0.5}_{a} \times \underbrace{0.5}_{big} \times \underbrace{1}_{house} = 0.0833$

ΡK

EMNLP

14 January 2008

11 informatics

Unseen events

- Another example sentence S_2 : they buy a new house.
- Bigram a new has never been seen before
- $p(new|a) = 0 \rightarrow p(S_2) = 0$
- ... but it is a good sentence!

Two types of zeros

- Unknown words
 - handled by an UNKNOWN word token
- Unknown n-grams
 - smoothing by giving them some low probability
 - back-off to lower order n-gram model
- Giving probability mass to unseen events reduces available probability mass for seen events ⇒ not maximum likelihood estimates anymore

ΡK

EMNLP

14 January 2008

13 informatics

Add-one smoothing

For all possible n-grams, add the count of one. Example:

bigram	count	$\rightarrow p(w_2 w_1)$	count+1	$\rightarrow p(w_2 w_1)$
a big	1	0.5	2	0.18
a house	1	0.5	2	0.18
a new	0	0	1	0.09
a the	0	0	1	0.09
a is	0	0	1	0.09
a there	0	0	1	0.09
a buy	0	0	1	0.09
аа	0	0	1	0.09
ai	0	0	1	0.09

Add-one smoothing

- This is Bayesian estimation with a uniform prior. Recall: $argmax_M P(M|D) = argmax_M P(D|M) \times P(M)$
- Is too much probability mass wasted on unseen events?
 ↔ Are impossible/unlikely events estimated too high?
- How can we measure this?

ΡK

EMNLP

14 January 2008

15 informatics

Expected counts and test set counts

Church and Gale (1991a) experiment: 22 million words training, 22 million words testing, from same domain (AP news wire), counts of bigrams:

Frequency r	Actual frequency	Expected frequency
in training	in test	in test (add one)
0	0.000027	0.000132
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822

We overestimate 0-count bigrams (0.000132 > 0.000027), but since there are so many, they use up so much probability mass that hardly any is left.

Using held-out data

- We know from the test data, how much probability mass should be assigned to certain counts.
- We can not use the test data for estimation, because that would be cheating.
- Divide up the training data: one half for count collection, one have for collecting frequencies in unseen text.
- Both halves can be switched and results combined to not lose out on training data.

ΡK

EMNLP

14 January 2008

School of

Deleted estimation

- Counts in training $C_t(w_1, ..., w_n)$
- Counts how often an ngram seen in training is seen in held-out training $C_h(w_1,...,w_n)$
- Number of ngrams with training count r: N_r
- Total times ngrams of training count r seen in held-out data: T_r
- Held-out estimator:

$$p_h(w_1,...,w_n) = \frac{T_r}{N_r N}$$
 where $count(w_1,...,w_n) = r$

Using both halves

• Both halves can be switched and results combined to not lose out on training data

 $p_h(w_1,...,w_n) = \frac{T_r^{01} + T_r^{10}}{N(N_r^{01} + N_r^{10})} \text{ where } count(w_1,...,w_n) = r$

ΡK

EMNLP

14 January 2008