Empirical Methods in Natural Language Processing Lecture 2 Introduction (II) Probability and Information Theory

Philipp Koehn Lecture given by Tommy Herbert

10 January 2008

EMNLP

10 January 2008

informatics

Recap

• Given word counts we can estimate a probability distribution:

 $P(w) = \frac{count(w)}{\sum_{w'} count(w')}$

• Another useful concept is conditional probability

 $p(w_2|w_1)$

• Chain rule:

 $p(w_1, w_2) = p(w_1) p(w_2|w_1)$

• Bayes rule:

$$p(x|y) = \frac{p(y|x) \ p(x)}{p(y)}$$

ΡK

ΡK

Expectation

- We introduced the concept of a random variable Xprob(X = x) = p(x)
- Example: Roll of a dice. There is a $\frac{1}{6}$ chance that it will be 1, 2, 3, 4, 5, or 6.
- We define the **expectation** E(X) of a random variable as: $E(X) = \sum_{x} p(x) \ x$
- Roll of a dice:

 $E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$

ΡK

EMNLP

10 January 2008

informatics

Variance

• Variance is defined as

$$Var(X) = E((X - E(X))^2) = E(X^2) - E^2(X)$$

$$Var(X) = \sum_{x} p(x) \ (x - E(X))^2$$

- Intuitively, this is a measure how far events diverge from the mean (expectation)
- Related to this is standard deviation, denoted as σ .

$$\begin{split} Var(X) &= \sigma^2 \\ E(X) &= \mu \end{split}$$

Variance (2)

• Roll of a dice:

$$Var(X) = \frac{1}{6}(1-3.5)^2 + \frac{1}{6}(2-3.5)^2 + \frac{1}{6}(3-3.5)^2 + \frac{1}{6}(4-3.5)^2 + \frac{1}{6}(4-3.5)^2 + \frac{1}{6}(5-3.5)^2 + \frac{1}{6}(6-3.5)^2 + \frac{1}{6}((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2) + \frac{1}{6}(6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) = 2.917$$

ΡK

EMNLP

10 January 2008

School of

CS

Standard distributions

- Uniform: all events equally likely
 - $\forall x, y : p(x) = p(y)$
 - example: roll of one dice
- **Binomial**: a serious of trials with only only two outcomes
 - probability p for each trial, occurrence r out of n times: $b(r;n,p) = \binom{n}{r} p^r (1-p)^{n-r}$
 - a number of coin tosses

Standard distributions (2)

- Normal: common distribution for continuous values
 - value in the range $[-\inf,x]$, given expectation μ and standard deviation σ : $n(x;\mu,\sigma)=\frac{1}{\sqrt{2\pi}\mu}e^{-(x-\mu)^2/(2\sigma^2)}$
 - also called **Bell curve**, or **Gaussian**
 - examples: heights of people, IQ of people, tree heights, ...

ΡK

EMNLP

10 January 2008

School of

Estimation revisited

- We introduced last lecture an estimation of probabilities based on frequencies: $P(w) = \frac{count(w)}{\sum_{w'} count(w')}$
- Alternative view: Bayesian: what is the most likely model given the data p(M|D)
- Model and data are viewed as random variables
 - model M as random variable
 - data D as random variable

Bayesian estimation

• Reformulation of p(M|D) using Bayes rule:

 $p(M|D) = \frac{p(D|M) \ p(M)}{p(D)}$

 $argmax_M p(M|D) = argmax_M p(D|M) p(M)$

- p(M|D) answers the question: What is the most likely model given the data
- p(M) is a prior that prefers certain models (e.g. simple models)
- The frequentist estimation of word probabilities p(w) is the same as Bayesian estimation with a uniform prior (no bias towards a specific model), hence it is also called the **maximum likelihood estimation**

ΡK

EMNLP

10 January 2008

Entropy

• An important concept is **entropy**:

 $H(X) = \sum_x -p(x) \ \log_2 p(x)$

• A measure for the degree of disorder

Entropy example

One event

$$p(a) = 1 \qquad \qquad H(X) = -1\log_2 1$$
$$= 0$$

ΡK

EMNLP

10 January 2008

informatics

11

School of

10

CS

Entropy example

2 equally likely events:

p(a) = 0.5	$H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5$
p(b) = 0.5	$= -\log_2 0.5$
	= 1

forma

12

ics

Entropy e	example
-----------	---------

4 equally likely events:

p(a) = 0.25	$H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25$
p(b) = 0.25 p(c) = 0.25	$-0.25 \log_2 0.25 - 0.25 \log_2 0.25$
p(c) = 0.25 p(d) = 0.25	$= -\log_2 0.25$
	=2

ΡK

EMNLP

10 January 2008

13 informatics

Entropy example

4 equally likely events, one more likely than the others:

(1) 07	$H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1$
p(a) = 0.7 p(b) = 0.1	$-0.1\log_2 0.1 - 0.1\log_2 0.1$
p(c) = 0.1	$= -0.7 \log_2 0.7 - 0.3 \log_2 0.1$
p(d) = 0.1	$= -0.7 \times -0.5146 - 0.3 \times -3.3219$
	= 0.36020 + 0.99658
	= 1.35678

14 informatics

Entropy example

4 equally likely events, one much more likely than the others:

(X)	$H(X) = -0.97 \log_2 0.97 - 0.01 \log_2 0.01$
p(a) = 0.97	$-\ 0.01 \log_2 0.01 - 0.01 \log_2 0.01$
p(b) = 0.01	$= -0.97 \log_2 0.97 - 0.03 \log_2 0.01$
p(c) = 0.01 p(d) = 0.01	$= -0.97 \times -0.04394 - 0.03 \times -6.6439$
p(a) = 0.01	= 0.04262 + 0.19932
	= 0.24194

ΡK

EMNLP

10 January 2008

CS

15 information

Intuition behind entropy

- A good model has low entropy
- \rightarrow it is more certain about outcomes
 - For instance a translation table

e	f	p(e f)
the	der	0.8
that	der	0.2

is better than

e	f	p(e f)
the	der	0.02
that	der	0.01

• A lot of statistical estimation is about reducing entropy

School of

- $\bullet\,$ Assume that we want to encode a sequence of events X
- Each event is encoded by a sequence of bits
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: a = 00, b = 01, c = 10, d = 11
 - 3 events, one more likely than others: a = 0, b = 10, c = 11
 - Morse code: e has shorter code than q
- Average number of bits needed to encode $X \ge$ entropy of X

ΡK

EMNLP

10 January 2008

School of

The entropy of English

- We already talked about the probability of a word p(w)
- But words come in sequence. Given a number of words in a text, can we guess the next word $p(w_n|w_1, ..., w_{n-1})$?
- Example: Newspaper article

Entropy for letter sequences

Assuming a model with a limited window size

Model	Entropy
Oth order	4.76
1st order	4.03
2nd order	2.8
human, unlimited	1.3

EMNLP

10 January 2008