
Outline About this course Introduction Coursework Teams Closing

Enterprise Computing
Introduction

Professor Stephen Gilmore
School of Informatics

The University of Edinburgh

January 15, 2015



Outline About this course Introduction Coursework Teams Closing

1 About this course

2 Introduction

3 Coursework
Requirements

Functional requirements
Non-functional requirements

4 Teams

5 Closing



Outline About this course Introduction Coursework Teams Closing

About this course

Enterprise Computing is a Level 10 course.

It is normally taken by undergraduate students in year 3.

There is a coursework component and a written exam.

The coursework component is worth 25% of the assessment.
The written exam is worth 75% of the assessment.

The coursework is in two parts.

Part 1 is zero-weighted: it is just for feedback.
Part 2 accounts for 100% of the coursework mark.

The examination is a 2-hour paper taken in the main exam
diet in April/May.



Outline About this course Introduction Coursework Teams Closing

What is “The Enterprise”?

If you were at the lecture then you heard the discussion of what “the enterprise” is.



Outline About this course Introduction Coursework Teams Closing

Enterprise computing systems (1/2)

Enterprise computing systems are very different in nature from
self-governed development projects such as apps and hobby
projects.

For hobby projects developers themselves determine what is
the best arrangement of the application, subject to some
feedback from users.

In enterprise computing systems one may have to work to
determine what is the best arrangement of the application: it
may not be at all obvious.



Outline About this course Introduction Coursework Teams Closing

Enterprise computing systems (2/2)

Enterprise computing systems may be governed by
performance or other regulatory requirements and are subject
to scrutiny from external regulators. External regulators can
apply fines or other penalties for non-compliance.

An enterprise computing system depends crucially on data.
Data doesn’t solve any problems. Data can be the problem.

Enterprise computing systems may be required to serve a very
broad user base, and cannot narrow their user base down to a
small demographic. There can be legal requirements to make
systems accessible to all.



Outline About this course Introduction Coursework Teams Closing

Enterprise computing: different from apps (1/3)

Mobile phone apps or web apps are subject to regulation on
their design, and implementation and content.

The App Store scrutinises apps which are submitted for
content, and for malware.

The Google Play Store does not vet apps in the same way,
although all Android apps should follow the three major
Android Design Principles (Enchant Me / Simplify My Life /
Make Me Amazing).

However, in use these apps are largely unregulated, with the
possible exception of in-app purchases.



Outline About this course Introduction Coursework Teams Closing

Enterprise computing: different from apps (2/3)

Let’s hear from an app innovator, Tech CEO Thomas Fisk of
PicSong.

https://www.youtube.com/watch?v=zpNgsU9o4ik

https://www.youtube.com/watch?v=zpNgsU9o4ik


Outline About this course Introduction Coursework Teams Closing

Enterprise computing: different from apps (3/3)

Apps can be simply for fun or because we can.

“Enchant Me.” / “If you want to do that for some reason.”

In contrast, enterprise computing systems are purposeful
systems.

We have an enterprise: we have a mission. People care.

The spirit that you bring to enterprise development can be
quite different from the spirit that you bring to app
development.

People need to use these systems. They are “real world”
systems. Enterprises depend on them.

Enterprises have stakeholders who may have widely different
points of view about how the enterprise would best be run.



Outline About this course Introduction Coursework Teams Closing

Enterprise computing is professional computing



Outline About this course Introduction Coursework Teams Closing

The structure of enterprise computing systems

Enterprise computing systems consist of distributed
components.

They will often consist of servers such as app servers and
database servers in the back-end; and mobile apps, responsive
web apps, or web sites in the front-end.

They will typically contain web services which supply
semi-structured data.

They will typically exchange semi-structured data in the form
of XML or JSON.



Outline About this course Introduction Coursework Teams Closing

Outline of the coursework

The goal of the coursework is to make use of a newly-released
Open Data API made available by Transport for Edinburgh.

The API is available at
http://tfe-opendata.readme.io/v1.0

From the API you can request data about stop locations,
service routes, journey planning, timetables and live bus
locations for the city of Edinburgh.

To access the API and use it you need an API key which looks
like this:0c627af5849e23b0 030 73525508

Some of the letters and numbers of the API key have been blanked out. If you were at the lecture then you
heard me say which letters and numbers these were.

http://tfe-opendata.readme.io/v1.0


Outline About this course Introduction Coursework Teams Closing

Requirements

Functional requirements (1/2)

The functional requirements for the project are intentionally
open. You are required to use the data which is made
available by the Transport for Edinburgh Open Data web
service, but it is not specified how you are to use it.

Underspecification such as this is very common in practical
software development. In contrast, it is very rare indeed to
receive a fully formal specification which details all of the
development work which is to be done.

The guidance that you have been given is that you should
make the open data information accessible. The data gives
you the potential to do something: you decide what.



Outline About this course Introduction Coursework Teams Closing

Requirements

Functional requirements (2/2)

As is often the case in practical software development, for the
software development part of this course you have some
freedoms which you should use as you see fit, and some
constraints which you just have to learn to live with.

You are free to choose the technology which you use to
implement your system on the server side (if you even have a
server side). You could use Python, PHP, Java, or another
language of your choice.

You are constrained to use TypeScript on the client side.
TypeScript is a typed dialect of the JavaScript language.



Outline About this course Introduction Coursework Teams Closing

Requirements

Non-functional requirements (1/2)

Non-functional requirements are different in nature from
functional requirements.

They are more difficult for non-experts to express precisely.

They can be subjective. “The old system is too hard to use:
the new one should be easy to use”.

They are often not expressed precisely in quantitative terms.
“The old system is too slow: the new one needs to be really,
really fast”.

Non-functional requirements are not always listed in order of
importance. (“I wish they’d told us that first.”) They may be
presented in a more-or-less random order.



Outline About this course Introduction Coursework Teams Closing

Requirements

Non-functional requirements (2/2)

Non-functional requirements are more likely to be spoken in a
meeting than to be written down. It may be your job to write
them down. That is the case here.

They may be issued one-at-a-time over a series of meetings,
rather than presented in full at the beginning of a project.
Also the case here.

A client may be more likely to change their mind about a
non-functional requirement than a functional one.

A client may be more hesitant about a non-functional
requirement than a functional one. (“It should be like this.”
versus “It must do this.”)

Non-functional requirements may be more likely to be
formulated negatively (“We don’t want . . . ”).



Outline About this course Introduction Coursework Teams Closing

Requirements

Non-functional requirement (#1 of 10)

This picture represents non-functional requirement #1. If you were at the lecture then you heard me explain
in words what it means.



Outline About this course Introduction Coursework Teams Closing

The Thirteen Coursework Teams

1 Team Klingon

2 Team Romulan

3 Team Vulcan

4 Team Kirk

5 Team Spock

6 Team Scotty

7 Team Bones

8 Team Sulu

9 Team Uhura

10 Team Chekov

11 Team Transporter

12 Team Phaser

13 Team Tricorder

If you were at the lecture then you heard me tell you which team you were on.



Outline About this course Introduction Coursework Teams Closing

Three terms you should know

When discussing software projects and their viability, there are
three terms which you should know.

Three terms you should know

“-ilities”.

Technical debt.

Bus factor.

If you were at the lecture then you heard the discussion of what these terms mean.



Outline About this course Introduction Coursework Teams Closing

Things to do now

Six things to do now

Arrange a meeting of your team. How will you organise
yourselves?

Start to define the work (be creative!) and to divide up the
work (be fair!).

Learn about the different skills on your team.

Visit the Transport for Edinburgh Open Data API and begin
learning about it.

http://tfe-opendata.readme.io/v1.0

Find out about TypeScript. Start learning TypeScript.

Find out about JSON. Start learning JSON.

http://tfe-opendata.readme.io/v1.0

	About this course
	Introduction
	Coursework
	Requirements

	Teams
	Closing

