
© 2002 by Prentice-Hall, Inc.

A
 Creating Markup with

XML

Objectives
• To create custom markup using XML.
• To understand the concept of an XML parser.
• To use elements and attributes to mark up data.
• To understand the difference between markup text

and character data.
• To understand the concept of a well-formed XML

document.
• To understand the concept of an XML namespace.
• To be able to use CDATA sections and processing

instructions.
The chief merit of language is clearness, and we know that
nothing detracts so much from this as do unfamiliar terms.
Galen

Every country has its own language, yet the subjects of which
the untutored soul speaks are the same everywhere.
Tertullian

The historian, essentially, wants more documents than he
can really use; the dramatist only wants more liberties than
he can really take.
Henry James

Entities should not be multiplied unnecessarily.
William of Occam

1612 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

A.1 Introduction
The Extensible Markup Language (XML) is a technology for marking up structured data
so that any software with an XML parser can understand and use its content. Data indepen-
dence, the separation of content from its presentation, is the essential characteristic of
XML. XML documents are simply text files that are marked up in a special way, so XML
is intelligible to both humans and machines. Any application can conceivably process XML
data. This makes XML ideal for data exchange.

Platform independence, the separation of an application from the platform on which it
runs, is the essential characteristic of Java. With Java, software developers can write a pro-
gram once, and it will run on any platform that has an implementation of the Java virtual
machine. Java and XML have common goals. Java allows the portability of executable
code across platforms. Likewise, XML allows the portability of structured data across
applications. When used together, these technologies allow applications and their associ-
ated data to work on any computer. Recognizing this fact, software developers across the
world are integrating XML into their Java applications to gain Web functionality and
interoperability.

In this appendix, we show how to incorporate XML into Java applications. We use a
Java application we created, named ParserTest, to output an XML document’s con-
tents. This application is included in the Appendix A examples directory on the CD-ROM
that accompanies this book.

A.2 Introduction to XML Markup
In this section, we begin marking up data using XML. Consider a simple XML document
(first.xml) that marks up a message (Fig. A.1). We output the entire XML document
to the command line.

Outline

A.1 Introduction
A.2 Introduction to XML Markup
A.3 Parsers and Well-Formed XML Documents
A.4 Characters

A.4.1 Characters vs. Markup
A.4.2 White Space, Entity References and Built-In Entities

A.5 CDATA Sections and Processing Instructions
A.6 XML Namespaces
A.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

Appendix A Creating Markup with XML 1613

© 2002 by Prentice-Hall, Inc.

The document begins with the optional XML declaration in line 1. This declaration
identifies the document as an XML document. The version information parameter spec-
ifies the version of XML used in the document.

Portability Tip A.1
Although the XML declaration is optional, it should be used to identify the XML version to
which the document conforms. Otherwise, in the future, a document without an XML decla-
ration might be assumed to conform to the latest version of XML. Errors or other serious
problems may result. A.1

Common Programming Error A.1
Placing anything, including whitespace (i.e., spaces, tabs and newlines), before an XML dec-
laration is an error. A.1

Lines 3–4 are comments, which begin with <!-- and end with -->. Comments can
be placed almost anywhere in an XML document and can span multiple lines. For example,
we could have written lines 3–4 as

<!-- Fig. A.1 : first.xml
 Simple introduction to XML markup -->

Common Programming Error A.2
Placing -- between <!-- and --> is an error. A.2

In XML, data are marked up using tags, which are names enclosed in angle brackets
(< >). Tags are used in pairs to delimit the beginning and end of markup. A tag that begins
markup is called a start tag and a tag that terminates markup is called an end tag. Examples
of start tags are <myMessage> and <message> (lines 6–7). End tags differ from start tags
in that they contain a forward slash (/) character. Examples of end tags are </message>
and </myMessage> in lines 7–8. XML documents can contain any number of tags.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.1 : first.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <myMessage id = "643070">
7 <message>Welcome to XML!</message>
8 </myMessage>

C:\>java -jar ParserTest.jar first.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.1 : first.xml -->
<!-- Simple introduction to XML markup -->
<myMessage id="T643070">
 <message>Welcome to XML!</message>
</myMessage>

Fig. A.1 Simple XML document containing a message .

1614 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

Good Programming Practice A.1
XML elements and attribute names should be meaningful. For example, use <address> in-
stead of <adr>. A.1

s. Common Programming Error A.3
Using spaces in an XML element name or attribute name is an error. A.3

Individual units of markup (i.e., everything from a start tag to an end tag, inclusive) are
called elements, which are the most fundamental building blocks of an XML document.
XML documents contain exactly one element—called a root element (e.g., myMessage
in lines 6–8)—that contains all other elements in the document. Elements are embedded or
nested within each other to form hierarchies—with the root element at the top of the hier-
archy. This practice allows document authors to create explicit relationships between data.

Common Programming Error A.4
Improperly nesting XML tags is an error. For example, <x><y>hello</x></y> is an er-
ror; here the nested <y> tag must end before the </x> tag. A.4

Good Programming Practice A.2
When creating an XML document, add whitespace to emphasize the document’s hierarchical
structure. This makes documents more readable to humans. A.2

Common Programming Error A.5
Attempting to create more than one root element in an XML document is an error. 0.0

Elements, such as the root element, that contain other elements are called parent ele-
ments. Elements nested within a parent element are called children. Parent elements can
have any number of children, but an individual child element can have only one parent. As
we will see momentarily, it is possible for an element to be both a parent element and a
child element. Element message is an example of a child element and element myMes-
sage is an example of a parent element.

Common Programming Error A.6
XML element names are case sensitive. Using the wrong mixture of case is an error. For ex-
ample, using the start tag <message> and end tag </Message> is an error. A.6

In addition to being placed between tags, data can be placed in attributes, which are
name-value pairs in start tags. Elements can have any number of attributes. In Fig. A.1,
attribute id is assigned the value "643070". XML element and attribute names can be of
any length and may contain letters, digits, underscores, hyphens and periods; they must
begin with a letter or an underscore.

Common Programming Error A.7
Not placing an attribute’s value in either single or double quotes is a syntax error. A.7

Notice that the XML declaration output differs from the XML declaration in line 1.
The optional encoding declaration specifies the method used to represent characters
electronically. UTF-8 is a character encoding typically used for Latin-alphabet characters

Appendix A Creating Markup with XML 1615

© 2002 by Prentice-Hall, Inc.

(e.g., English) that can be stored in one byte. When present, this declaration allows authors
to specify a character encoding explicitly. When omitted, either UTF-8 or UTF-16 (a
format for encoding and storing characters in two bytes) is the default. We discuss character
encoding in Section A.4.

Portability Tip A.2
The encoding declaration allows XML documents to be authored in a wide variety of hu-
man languages. A.2

A.3 Parsers and Well-Formed XML Documents
A software program called an XML parser (or an XML processor) is required to process an
XML document. XML parsers read the XML document, check its syntax, report any errors
and allow programmatic access to the document’s contents. An XML document is consid-
ered well formed if it is syntactically correct (i.e., errors are not reported by the parser when
the document is processed). Figure A.1 is an example of a well-formed XML document.

If an XML document is not well formed, the parser reports errors. For example, if the
end tag (line 8) in Fig. A.1 is omitted, the error message shown in Fig. A.2 is generated by
the parser.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.2 : error.xml -->
4 <!-- XML document missing an end tag -->
5
6 <myMessage id = "643070">
7 <message>Welcome to XML!</message>

C:\>java -jar ParserTest.jar error.xml
Exception in thread "main" org.xml.sax.SAXParseException: End of entity
not allowed; an end tag is missing.
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3035)
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3023)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1758)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.ja-
va:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.ja-
va:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.ja-
va:433)

 at org.apache.crimson.jaxp.DocumentBuilderImpl.parse(DocumentBuild-
erImpl.java:179)
 at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.ja-
va:161)
 at ParserTest.main(ParserTest.java:42)

Fig. A.2 XML document missing an end tag.

1616 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

Most XML parsers can be downloaded at no charge. Several Independent Software
Vendors (ISVs) have developed XML parsers, which can be found at www.oasis-
open.org/cover/xml.html#xmlparsers. In this appendix, we will use the refer-
ence implementation for the Java API for XML Processing 1.1 (JAXP).

Parsers can support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically, using languages such as
Java™, Python, and C. A DOM-based parser builds a tree structure containing the XML
document’s data in memory. A SAX-based parser processes the document and generates
events (i.e., notifications to the application) when tags, text, comments, etc., are encoun-
tered. These events return data from the XML document. Software programs can “listen”
for the events to obtain data from the XML document.

The examples we present use DOM-based parsing. In Appendix C, we provide a detailed
discussion of the DOM. We do not discuss SAX-based parsing in these appendices.

A.4 Characters
In this section, we discuss the collection of characters—called a character set—permitted
in an XML document. XML documents may contain: carriage returns, line feeds and Uni-
code® characters. Unicode is a character set created by the Unicode Consortium
(www.unicode.org), which encodes the vast majority of the world’s commercially vi-
able languages. We discuss Unicode in detail in Appendix I.

A.4.1 Characters vs. Markup
Once a parser determines that all characters in a document are legal, it must differentiate
between markup text and character data. Markup text is enclosed in angle brackets (< and
>). Character data (sometimes called element content) is the text delimited by the start tag
and end tag. Child elements are considered markup—not character data. Lines 1, 3–4 and
6–8 in Fig. A.1 contain markup text. In line 7, the tags <message> and </message>
are the markup text and the text Welcome to XML! is character data.

A.4.2 White Space, Entity References and Built-In Entities
Spaces, tabs, line feeds and carriage returns are characters commonly called whitespace char-
acters. An XML parser is required to pass all characters in a document, including whitespace
characters, to the application (e.g., a Java application) using the XML document.

Figure A.3 demonstrates that whitespace characters are passed by the parser to the appli-
cation using the XML document. In this case, we simply print the data returned by the parser.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.3 : whitespace.xml -->
4 <!-- Demonstrating whitespace, entities -->
5 <!-- and empty elements -->

6

Fig. A.3 Whitespace characters in an XML document (part 1 of 2).

Appendix A Creating Markup with XML 1617

© 2002 by Prentice-Hall, Inc.

A parser can inform an application as to whether individual whitespace characters are
significant (i.e., need to be preserved) or insignificant (i.e., need not be preserved). The output
window illustrates that the majority of whitespace characters in the document are considered
significant. Line 2 was considered insignificant by the application as well as the extra space
characters in the start tag of line 13. In Appendix B, you will see that whitespace may or may
not be significant, depending on the Document Type Definition (DTD) that an XML file uses.
We will explore the subtleties of whitespace interpretation in greater detail in Appendix B.

XML element markup consists of a start tag, character data and an end tag. The ele-
ment of line 10 is called an empty element, because it does not contain character data
between its start and end tags. The forward slash character closes the tag. Alternatively, this
empty element can be written as

<company name = "Deitel & Associates, Inc."></company>

Both forms are equivalent.
Almost any character can be used in an XML document, but the characters ampersand

(&) and left angle bracket (<) are reserved in XML and may not be used in character data.
To use these symbols in character data or in attribute values, entity references must be used.
Entity references begin with an ampersand (&) and end with a semicolon (;). XML pro-
vides entity references (or built-in entities) for the ampersand (&), left-angle bracket
(<), right angle bracket (>), apostrophe (') and quotation mark (").

7 <information>
8
9 <!-- empty element -->

10 <company name = "Deitel & Associates, Inc." />
11
12 <!-- start tag contains insignificant whitespace -->
13 <city > Sudbury </city>
14
15
16 <state>Massachusetts</state>
17 </information>

C:\>java -jar ParserTest.jar whitespace.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.3 : whitespace.xml -->
<!-- Demonstrating whitespace, entities -->
<!-- and empty elements -->
<information>
 <!-- empty element -->
 <company name="Deitel & Associates, Inc."/>

 <!-- start tag contains insignificant whitespace -->
 <city> Sudbury </city>

 <state>Massachusetts</state>
</information>

Fig. A.3 Whitespace characters in an XML document (part 2 of 2).

1618 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

Common Programming Error A.8
Attempting to use the left-angle bracket (<) in character data or in attribute values is an er-
ror. A.8

Common Programming Error A.9
Attempting to use the ampersand (&)—other than in an entity reference—in character data
or in attribute values is an error. A.9

A.5 CDATA Sections and Processing Instructions
In this section, we discuss parts of an XML document, called CDATA sections, that can con-
tain text, reserved characters (e.g., <) and whitespace characters. Character data in a CDA-
TA section are not processed by the XML parser. A common use of a CDATA section is for
programming code such as JavaScript and C++, which often include the characters & and
<. Figure A.4 presents an XML document that compares text in a CDATA section with char-
acter data.

The first sample element (lines 8–12) contains C++ code as character data. Each
occurrence of <, > and & is replaced by an entity reference. Lines 15–20 use a CDATA sec-
tion to indicate a block of text that the parser should not treat as character data or markup.
CDATA sections begin with <![CDATA[and terminate with]]>. Notice that the < and &
characters (lines 18–19) do not need to be replaced by entity references.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.4 : cdata.xml -->
4 <!-- CDATA section containing C++ code -->
5
6 <book title = "C++ How to Program" edition = "3">
7
8 <sample>
9 // C++ comment

10 if (this->getX() < 5 && value[0] != 3)
11 cerr << this->displayError();
12 </sample>
13
14 <sample>
15 <![CDATA[
16
17 // C++ comment
18 if (this->getX() < 5 && value[0] != 3)
19 cerr << this->displayError();
20]]>
21 </sample>
22
23 C++ How to Program by Deitel & Deitel
24
25 <?button cpp = "sample.cpp" ansi = "yes"?>
26 </book>

Fig. A.4 Using a CDATA section (part 1 of 2).

Appendix A Creating Markup with XML 1619

© 2002 by Prentice-Hall, Inc.

Common Programming Error A.10
Placing one or more spaces inside the opening <![CDATA[or closing]]> is an error. 0.0

Because a CDATA section is not parsed, it can contain almost any text, including char-
acters normally reserved for XML syntax, such as < and &. However, CDATA sections
cannot contain the text]]>, because this is used to terminate a CDATA section. For
example,

<![CDATA[
 The following characters cause an error:]]>
]]>

is an error.
Line 25 is an example of a processing instruction (PI). Processing instructions provide

a convenient syntax to allow document authors to embed application-specific data within
an XML document. Processing instructions have no effect on a document if the application
processing the document does not use them. The information contained in a PI is passed to
the application that is using the XML document.

Processing instructions are delimited by <? and ?> and consist of a PI target and a PI
value. Almost any name may be used for a PI target, except the reserved word xml (in any
mixture of case). In the current example, the PI target is named button and the PI value is
cpp = "sample.cpp" ansi = "yes". This PI might be used by an application to create
a button that, when clicked, displays the entire code listing for a file named sample.cpp.

C:\>java -jar ParserTest.jar cdata.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.4 : cdata.xml -->
<!-- CDATA section containing C++ code -->
<book title="C++ How to Program" edition="3">

 <sample>
 // C++ comment
 if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();
 </sample>

 <sample>
 <![CDATA[

 // C++ comment
 if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();
]]>
 </sample>

 C++ How to Program by Deitel & Deitel

 <?button cpp = "sample.cpp" ansi = "yes"?>
</book>

Fig. A.4 Using a CDATA section (part 2 of 2).

1620 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

Software Engineering Observation A.1
Processing instructions provide a means for programmers to insert application-specific in-
formation into an XML document without affecting the document’s portability. A.1

A.6 XML Namespaces
Because XML allows document authors to create their own tags, naming collisions (i.e., con-
flicts between two different elements that have the same name) can occur. For example, we
may use the element book to mark up data about one of our publications. A stamp collector
may also create an element book to mark up data about a book of stamps. If both of these
elements were used in the same document, there would be a naming collision, and it would
be difficult to determine which kind of data each element contained. In this section, we dis-
cuss a method for preventing collisions called namespaces. In Appendix D, we begin using
namespaces.

For example,

<subject>Math</subject>

and

<subject>Thrombosis</subject>

use a subject element to mark up a piece of data. However, in the first case the subject
is something one studies in school, whereas in the second case the subject is in the field of
medicine. These two subject elements can be differentiated using namespaces. For ex-
ample

<school:subject>Math</school:subject>

and

<medical:subject>Thrombosis</medical:subject>

indicate two distinct subject elements. Both school and medical are namespace
prefixes. Namespace prefixes are prepended to element and attribute names in order to
specify the namespace in which the element or attribute can be found. Each namespace pre-
fix is tied to a uniform resource identifier (URI) that uniquely identifies the namespace.
Document authors can create their own namespace prefixes, as shown in Fig. A.5 (lines 6–
7). Virtually any name may be used for a namespace, except the reserved namespace xml.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.5 : namespace.xml -->
4 <!-- Namespaces -->
5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8

Fig. A.5 Demonstrating XML namespaces (part 1 of 2).

Appendix A Creating Markup with XML 1621

© 2002 by Prentice-Hall, Inc.

In Fig. A.5, two distinct file elements are differentiated using namespaces. Lines 6–
7 use the XML namespace keyword xmlns to create two namespace prefixes: text and
image. The values assigned to attributes xmlns:text and xmlns:image are called
Uniform Resource Identifiers (URIs). By definition, a URI is a series of characters used to
differentiate names.

To ensure that a namespace is unique, the document author must provide a unique URI.
Here, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. A common practice is to use Universal Resource Locators (URLs) for URIs, because
the domain names (e.g., deitel.com) used in URLs are guaranteed to be unique. For
example, lines 6–7 could have been written as

<directory xmlns:text = "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

where we use URLs related to the Deitel & Associates, Inc., domain name (www.dei-
tel.com). These URLs are never visited by the parser—they only represent a series of
characters for differentiating names and nothing more. The URLs need not even exist or be
properly formed.

Lines 9–11 use the namespace prefix text to describe elements file and descrip-
tion. Notice that end tags have the namespace prefix text applied to them as well. Lines
13–16 apply namespace prefix image to elements file, description and size.

9 <text:file filename = "book.xml">
10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </text:directory>

<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.5 : namespace.xml -->
<!-- Namespaces -->
<text:directory xmlns:text="urn:deitel:textInfo" xmlns:image="urn:dei-
tel:imageInfo">

 <text:file filename="book.xml">
 <text:description>A book list</text:description>
 </text:file>

 <image:file filename="funny.jpg">
 <image:description>A funny picture</image:description>
 <image:size width="200" height="100"/>
 </image:file>

</text:directory>

Fig. A.5 Demonstrating XML namespaces (part 2 of 2).

1622 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

To eliminate the need to place a namespace prefix in each element, authors may
specify a default namespace for an element and all of its child elements. Figure A.6 dem-
onstrates the use of default namespaces.

We declare a default namespace using the xmlns attribute with a URI as its value (line
6). Once this default namespace is in place, child elements that are part of the namespace
do not need a namespace prefix. Element file (line 9) is in the namespace corresponding
to the URI urn:deitel:textInfo. Compare this usage with that in Fig. A.5, where
we prefixed the file and description elements with the namespace prefix text
(lines 9–11).

The default namespace applies to all elements contained in the directory element.
However, we may use a namespace prefix to specify a different namespace for particular

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.6 : defaultnamespace.xml -->
4 <!-- Using Default Namespaces -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </directory>

C:\>java -jar ParserTest.jar defaultnamespace.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.6 : defaultnamespace.xml -->
<!-- Using Default Namespaces -->
<directory xmlns="urn:deitel:textInfo" xmlns:image="urn:deitel:image-
Info">

 <file filename="book.xml">
 <description>A book list</description>
 </file>

 <image:file filename="funny.jpg">
 <image:description>A funny picture</image:description>
 <image:size width="200" height="100"/>
 </image:file>

</directory>

Fig. A.6 Using default namespaces.

Appendix A Creating Markup with XML 1623

© 2002 by Prentice-Hall, Inc.

elements. For example, the file element on line 13 uses the prefix image to indicate that
the element is in the namespace corresponding to the URI urn:deitel:imageInfo.

A.7 Internet and World Wide Web Resources
www.w3.org/XML
Worldwide Web Consortium Extensible Markup Language home page. Contains links to related
XML technologies, recommended books, a time-line for publications, developer discussions, trans-
lations, software, etc.

www.w3.org/Addressing
Worldwide Web Consortium addressing home page. Contains information on URIs and links to other
resources.

www.xml.com
This is one of the most popular XML sites on the Web. It has resources and links relating to all aspects
of XML, including articles, news, seminar information, tools, Frequently Asked Questions (FAQs),
etc.

www.xml.org
“The XML Industry Portal” is another popular XML site that includes links to many different XML
resources, such as news, FAQs and descriptions of XML-derived markup languages.

www.oasis-open.org/cover
Oasis XML Cover Pages home page is a comprehensive reference for many aspects of XML and its
related technologies. The site includes links to news, articles, software and events.

html.about.com/compute/html/cs/xmlandjava/index.htm
This site contains articles about XML and Java and is updated regularly.

www.w3schools.com/xml
Contains a tutorial that introduces the reader to the major aspects of XML. The tutorial contains many
examples.

java.sun.com/xml
Home page of the Sun’s JAXP and parser technology.

SUMMARY
• XML is a technology for creating markup languages to describe data of virtually any type in a

structured manner.

• XML allows document authors to describe data precisely by creating their own tags. Markup lan-
guages can be created using XML for describing almost anything.

• XML documents are commonly stored in text files that end in the extension .xml. Any text editor
can be used to create an XML document. Many software packages allow data to be saved as XML
documents.

• The XML declaration specifies the version to which the document conforms.

• All XML documents must have exactly one root element that contains all of the other elements.

• To process an XML document, a software program called an XML parser is required. The XML
parser reads the XML document, checks its syntax, reports any errors and allows access to the doc-
ument’s contents.

• An XML document is considered well formed if it is syntactically correct (i.e., the parser did not
report any errors due to missing tags, overlapping tags, etc.). Every XML document must be well
formed.

1624 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

• Parsers may or may not support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically by using languages such as Ja-
va, Python and C.

• XML documents may contain: carriage return, the line feed and Unicode characters. Unicode is a
standard that was released by the Unicode Consortium in 1991 to expand character representation
for most of the world’s major languages. The American Standard Code for Information Inter-
change (ASCII) is a subset of Unicode.

• Markup text is enclosed in angle brackets (i.e., < and >). Character data are the text between a start
tag and an end tag. Child elements are considered markup—not character data.

• Spaces, tabs, line feeds and carriage returns are whitespace characters. In an XML document, the
parser considers whitespace characters to be either significant (i.e., preserved by the parser) or in-
significant (i.e., not preserved by the parser).

• Almost any character may be used in an XML document. However, the characters ampersand (&)
and left-angle bracket (<) are reserved in XML and may not be used in character data, except in
CDATA sections. Angle brackets are reserved for delimiting markup tags. The ampersand is re-
served for delimiting hexadecimal values that refer to a specific Unicode character. These expres-
sions are terminated with a semicolon (;) and are called entity references. The apostrophe and
double-quote characters are reserved for delimiting attribute values.

• XML provides built-in entities for ampersand (&), left-angle bracket (<), right-angle
bracket (>), apostrophe (') and quotation mark (").

• All XML start tags must have a corresponding end tag and all start- and end tags must be properly
nested. XML is case sensitive, therefore start tags and end tags must have matching capitalization.

• Elements define a structure. An element may or may not contain content (i.e., child elements or
character data). Attributes describe elements. An element may have zero, one or more attributes
associated with it. Attributes are nested within the element’s start tag. Attribute values are en-
closed in quotes—either single or double.

• XML element and attribute names can be of any length and may contain letters, digits, under-
scores, hyphens and periods; and they must begin with either a letter or an underscore.

• A processing instruction’s (PI’s) information is passed by the parser to the application using the
XML document. Document authors may create their own processing instructions. Almost any
name may be used for a PI target except the reserved word xml (in any mixture of case). Process-
ing instructions allow document authors to embed application-specific data within an XML doc-
ument. This data are not intended to be readable by humans, but readable by applications.

• CDATA sections may contain text, reserved characters (e.g., <), words and whitespace characters.
XML parsers do not process the text in CDATA sections. CDATA sections allow the document au-
thor to include data that is not intended to be parsed. CDATA sections cannot contain the text]]>.

• Because document authors can create their own tags, naming collisions (e.g., conflicts that arise
when document authors use the same names for elements) can occur. Namespaces provide a means
for document authors to prevent naming collisions. Document authors create their own namespaces.
Virtually any name may be used for a namespace, except the reserved namespace xml.

• A Universal Resource Identifier (URI) is a series of characters used to differentiate names. URIs
are used with namespaces.

TERMINOLOGY
<![CDATA[and]]> to delimit a CDATA

section
ampersand (&)
angle brackets (< and >)

<? and ?> to delimit a processing instruction apostrophe (')

Appendix A Creating Markup with XML 1625

© 2002 by Prentice-Hall, Inc.

SELF-REVIEW EXERCISES
A.1 State whether the following are true or false. If false, explain why.

a) XML is a technology for creating markup languages.
b) XML markup text is delimited by forward and backward slashes (/ and \).
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax and may support the Document Object Model

and/or the Simple API for XML.
e) An XML document is considered well formed if it contains whitespace characters.
f) SAX-based parsers process XML documents and generate events when tags, text, com-

ments, etc., are encountered.
g) When creating new XML tags, document authors must use the set of XML tags provided

by the W3C.
h) The pound character (#), the dollar sign ($), the ampersand (&), the greater-than symbol

(>) and the less-than symbol (<) are examples of XML reserved characters.
i) Any text file is automatically considered to be an XML document by a parser.

A.2 Fill in the blanks in each of the following statements:
a) A/An processes an XML document.
b) Valid characters that can be used in an XML document are the carriage return, line feed

and characters.
c) An entity reference must be proceeded by a/an character.
d) A/An is delimited by <? and ?>.
e) Text in a/an section is not parsed.

application parser
ASCII (American Standard Code for Information

Interchange)
PI target
PI value

attribute processing instruction (PI)
built-in entity quotation mark (")
CDATA section reserved character
character data reserved keyword
child reserved namespace
child element right angle bracket (>)
comment root element
container element SAX-based parser
content significant whitespace character
element Simple API for XML (SAX)
empty element start tag
end tag structured data
entity references tree structure of an XML document
insignificant whitespace character Unicode
Java API for XML Parsing (JAXP) Unicode Consortium
left angle bracket (<) Universal Resource Identifier (URI)
markup language XML
markup text XML declaration
namespace XML document
namespace prefix XML namespace
namespace xml
naming collision

XML parser
XML processor

node XML version

1626 Creating Markup with XML Appendix A

© 2002 by Prentice-Hall, Inc.

f) An XML document is considered if it is syntactically correct.
g) help document authors prevent element-naming collisions.
h) A/An tag does not contain character data.
i) The built-entity for the ampersand is .

A.3 Identify and correct the error(s) in each of the following:
a) <my Tag>This is my custom markup<my Tag>
b) <!PI value!> <!-- a sample processing instruction -->
c) <myXML>I know XML!!!</MyXML>
d) <CDATA>This is a CDATA section.</CDATA>
e) <xml>x < 5 && x > y</xml> <!-- mark up a Java condition **>

ANSWERS TO SELF-REVIEW EXERCISES
A.4 a)True. b) False. In an XML document, markup text is any text delimited by angle brack-
ets (< and >), with a forward slash being used in the end tag. c) True. d) True. e) False. An XML
document is considered well formed if it is parsed successfully. f) True. g) False. When creating new
tags, programmers may use any valid name except the reserved word xml (in any mixture of case).
h) False. XML reserved characters include the ampersand (&) and the left angle bracket (<), but not
the right-angle bracket (>), # and $. i) False. The text file must be parsable by an XML parser. If pars-
ing fails, the document cannot be considered an XML document.

A.5 a) parser. b) Unicode. c) ampersand (&). d) processing instruction. e) CDATA. f) well formed.
g) namespaces. h) empty. i) &.

A.6 a) Element name my tag contains a space. The forward slash, /, is missing in the end tag.
The corrected markup is <myTag>This is my custom markup</myTag>

b) Incorrect delimiters for a processing instruction. The corrected markup is
<?PI value?> <!-- a sample processing instruction -->

c) Incorrect mixture of case in end tag. The corrected markup is
<myXML>I know XML!!!</myXML> or <MyXML>I know XML!!!</MyXML>

d) Incorrect syntax for a CDATA section. The corrected markup is
<![CDATA[This is a CDATA section.]]>

e) The name xml is reserved and cannot be used as an element. The characters <, & and >
must be represented using entities. The closing comment delimiter should be two hy-
phens—not two stars. Corrected markup is
<someName>x < 5 && x > y</someName>
<!-- mark up a Java condition -->

