
Chapter 1. Quickstart with Tomcat

1.1. Getting started with Hibernate
This tutorial explains a setup of Hibernate 3.0 with the Apache Tomcat servlet container (we used
version 4.1, the differences to 5.0 should be minimal) for a web-based application. Hibernate works
well in a managed environment with all major J2EE application servers, or even in standalone Java
applications. The database system used in this tutorial is PostgreSQL 7.4, support for other database is
only a matter of changing the Hibernate SQL dialect configuration and connection properties.

First, we have to copy all required libraries to the Tomcat installation. We use a separate web context
(webapps/quickstart) for this tutorial, so we’ve to consider both the global library search path
(TOMCAT/common/lib) and the classloader at the context level in
webapps/quickstart/WEB-INF/lib (for JAR files) and
webapps/quickstart/WEB-INF/classes . We refer to both classloader levels as the global
classpath and the context classpath.

Now, copy the libraries to the two classpaths:

1. Copy the JDBC driver for the database to the global classpath. This is required for the DBCP
connection pool software which comes bundled with Tomcat. Hibernate uses JDBC connections
to execute SQL on the database, so you either have to provide pooled JDBC connections or
configure Hibernate to use one of the directly supported pools (C3P0, Proxool). For this tutorial,
copy the pg74jdbc3.jar library (for PostgreSQL 7.4 and JDK 1.4) to the global classloaders
path. If you’d like to use a different database, simply copy its appropriate JDBC driver.

2. Never copy anything else into the global classloader path in Tomcat, or you will get problems
with various tools, including Log4j, commons-logging and others. Always use the context
classpath for each web application, that is, copy libraries to WEB-INF/lib and your own
classes and configuration/property files to WEB-INF/classes . Both directories are in the
context level classpath by default.

3. Hibernate is packaged as a JAR library. The hibernate3.jar file should be copied in the
context classpath together with other classes of the application. Hibernate requires some 3rd party
libraries at runtime, these come bundled with the Hibernate distribution in the lib/ directory;
see Table 1.1, â Hibernate 3rd party libraries â. Copy the required 3rd party libraries to the
context classpath.

Table 1.1. Hibernate 3rd party libraries

http://www.hibernate.org/hib_docs/v3/reference/en/html/quickstart.html#3rdpartylibs

Library Description

antlr (required) Hibernate uses ANTLR to produce query parsers, this library is also needed at
runtime.

dom4j (required) Hibernate uses dom4j to parse XML configuration and XML mapping metadata
files.

CGLIB, asm
(required)

Hibernate uses the code generation library to enhance classes at runtime (in
combination with Java reflection).

Commons
Collections,
Commons
Logging
(required)

Hibernate uses various utility libraries from the Apache Jakarta Commons
project.

EHCache
(required)

Hibernate can use various cache providers for the second-level cache. EHCache is
the default cache provider if not changed in the configuration.

Log4j (optional)

Hibernate uses the Commons Logging API, which in turn can use Log4j as the
underlying logging mechanism. If the Log4j library is available in the context
library directory, Commons Logging will use Log4j and the
log4j.properties configuration in the context classpath. An example
properties file for Log4j is bundled with the Hibernate distribution. So, copy
log4j.jar and the configuration file (from src/) to your context classpath if you
want to see whats going on behind the scenes.

Required or not?

Have a look at the file lib/README.txt in the Hibernate distribution. This is
an up-to-date list of 3rd party libraries distributed with Hibernate. You will find
all required and optional libraries listed there (note that "buildtime required" here
means for Hibernate’s build, not your application).

We now set up the database connection pooling and sharing in both Tomcat and Hibernate. This
means Tomcat will provide pooled JDBC connections (using its builtin DBCP pooling feature),
Hibernate requests these connections through JNDI. Alternatively, you can let Hibernate manage the
connection pool. Tomcat binds its connection pool to JNDI; we add a resource declaration to Tomcat’s
main configuration file, TOMCAT/conf/server.xml :

<Context path="/quickstart" docBase="quickstart">
 <Resource name="jdbc/quickstart" scope="Shareable" type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/quickstart">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>

 <!-- DBCP database connection settings -->
 <parameter>
 <name>url</name>
 <value>jdbc:postgresql://localhost/quickstart</value>
 </parameter>
 <parameter>
 <name>driverClassName</name><value>org.postgresql.Driver</value>
 </parameter>
 <parameter>

 <name>username</name>
 <value>quickstart</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>secret</value>
 </parameter>

 <!-- DBCP connection pooling options -->
 <parameter>
 <name>maxWait</name>
 <value>3000</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>100</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>10</value>
 </parameter>
 </ResourceParams>
</Context>

The context we configure in this example is named quickstart , its base is the
TOMCAT/webapp/quickstart directory. To access any servlets, call the path
http://localhost:8080/quickstart in your browser (of course, adding the name of the
servlet as mapped in your web.xml). You may also go ahead and create a simple servlet now that has
an empty process() method.

Tomcat provides connections now through JNDI at java:comp/env/jdbc/quickstart . If you
have trouble getting the connection pool running, refer to the Tomcat documentation. If you get JDBC
driver exception messages, try to setup JDBC connection pool without Hibernate first. Tomcat &
JDBC tutorials are available on the Web.

Your next step is to configure Hibernate. Hibernate has to know how it should obtain JDBC
connections. We use Hibernate’s XML-based configuration. The other approach, using a properties
file, is almost equivalent but misses a few features the XML syntax allows. The XML configuration
file is placed in the context classpath (WEB-INF/classes), as hibernate.cfg.xml :

<?xml version=’1.0’ encoding=’utf-8’?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <property name="connection.datasource">java:comp/env/jdbc/quickstart</property>
 <property name="show_sql">false</property>
 <property name="dialect">org.hibernate.dialect.PostgreSQLDialect</property>

 <!-- Mapping files -->
 <mapping resource="Cat.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

We turn logging of SQL commands off and tell Hibernate what database SQL dialect is used and
where to get the JDBC connections (by declaring the JNDI address of the Tomcat bound pool). The
dialect is a required setting, databases differ in their interpretation of the SQL "standard". Hibernate
will take care of the differences and comes bundled with dialects for all major commercial and open
source databases.

A SessionFactory is Hibernate’s concept of a single datastore, multiple databases can be used by
creating multiple XML configuration files and creating multiple Configuration and
SessionFactory objects in your application.

The last element of the hibernate.cfg.xml declares Cat.hbm.xml as the name of a Hibernate
XML mapping file for the persistent class Cat . This file contains the metadata for the mapping of the
POJO class Cat to a database table (or tables). We’ll come back to that file soon. Let’s write the
POJO class first and then declare the mapping metadata for it.

1.2. First persistent class
Hibernate works best with the Plain Old Java Objects (POJOs, sometimes called Plain Ordinary Java
Objects) programming model for persistent classes. A POJO is much like a JavaBean, with properties
of the class accessible via getter and setter methods, shielding the internal representation from the
publicly visible interface (Hibernate can also access fields directly, if needed):

package org.hibernate.examples.quickstart;

public class Cat {

 private String id;
 private String name;
 private char sex;
 private float weight;

 public Cat() {
 }

 public String getId() {
 return id;
 }

 private void setId(String id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public char getSex() {
 return sex;
 }

 public void setSex(char sex) {
 this.sex = sex;
 }

 public float getWeight() {
 return weight;
 }

 public void setWeight(float weight) {
 this.weight = weight;
 }

}

Hibernate is not restricted in its usage of property types, all Java JDK types and primitives (like
String , char and Date) can be mapped, including classes from the Java collections framework.
You can map them as values, collections of values, or associations to other entities. The id is a special
property that represents the database identifer (primary key) of that class, it is highly recommended for
entities like a Cat . Hibernate can use identifiers only internally, but we would lose some of the
flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do you have to subclass from a
special root persistent class. Hibernate also doesn’t require any build time processing, such as
byte-code manipulation, it relies solely on Java reflection and runtime class enhancement (through
CGLIB). So, without any dependency of the POJO class on Hibernate, we can map it to a database
table.

1.3. Mapping the cat
The Cat.hbm.xml mapping file contains the metadata required for the object/relational mapping.
The metadata includes declaration of persistent classes and the mapping of properties (to columns and
foreign key relationships to other entities) to database tables.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

 <class name="org.hibernate.examples.quickstart.Cat" table="CAT">

 <!-- A 32 hex character is our surrogate key. It’s automatically
 generated by Hibernate with the UUID pattern. -->
 <id name="id" type="string" unsaved-value="null" >
 <column name="CAT_ID" sql-type="char(32)" not-null="true"/>
 <generator class="uuid.hex"/>
 </id>

 <!-- A cat has to have a name, but it shouldn’ be too long. -->
 <property name="name">
 <column name="NAME" length="16" not-null="true"/>
 </property>

 <property name="sex"/>

 <property name="weight"/>

 </class>

</hibernate-mapping>

Every persistent class should have an identifer attribute (actually, only classes representing entities,
not dependent value-typed classes, which are mapped as components of an entity). This property is
used to distinguish persistent objects: Two cats are equal if
catA.getId().equals(catB.getId()) is true, this concept is called database identity.
Hibernate comes bundled with various identifer generators for different scenarios (including native
generators for database sequences, hi/lo identifier tables, and application assigned identifiers). We use
the UUID generator (only recommended for testing, as integer surrogate keys generated by the
database should be prefered) and also specify the column CAT_ID of the table CAT for the Hibernate
generated identifier value (as a primary key of the table).

All other properties of Cat are mapped to the same table. In the case of the name property, we
mapped it with an explicit database column declaration. This is especially useful when the database
schema is automatically generated (as SQL DDL statements) from the mapping declaration with
Hibernate’s SchemaExport tool. All other properties are mapped using Hibernate’s default settings,
which is what you need most of the time. The table CAT in the database looks like this:

 Column | Type | Modifiers
--------+-----------------------+-----------
 cat_id | character(32) | not null
 name | character varying(16) | not null
 sex | character(1) |
 weight | real |
Indexes: cat_pkey primary key btree (cat_id)

You should now create this table in your database manually, and later read Chapter 21, Toolset Guide
if you want to automate this step with the hbm2ddl tool. This tool can create a full SQL DDL,
including table definition, custom column type constraints, unique constraints and indexes.

1.4. Playing with cats
We’re now ready to start Hibernate’s Session . It is the persistence manager, we use it to store and
retrieve Cat s to and from the database. But first, we’ve to get a Session (Hibernate’s unit-of-work)
from the SessionFactory :

SessionFactory sessionFactory =
 new Configuration().configure().buildSessionFactory();

The call to configure() loads the hibernate.cfg.xml configuration file and initializes the
Configuration instance. You can set other properties (and even change the mapping metadata) by
accessing the Configuration before you build the SessionFactory (it is immutable). Where
do we create the SessionFactory and how can we access it in our application?

A SessionFactory is usually only build once, e.g. at startup with a load-on-startup servlet. This
also means you should not keep it in an instance variable in your servlets, but in some other location.
Furthermore, we need some kind of Singleton, so we can access the SessionFactory easily in
application code. The approach shown next solves both problems: startup configuration and easy
access to a SessionFactory .

http://www.hibernate.org/hib_docs/v3/reference/en/html/toolsetguide.html

We implement a HibernateUtil helper class:

import org.hibernate.*;
import org.hibernate.cfg.*;

public class HibernateUtil {

 private static Log log = LogFactory.getLog(HibernateUtil.class);

 private static final SessionFactory sessionFactory;

 static {
 try {
 // Create the SessionFactory
 sessionFactory = new Configuration().configure().buildSessionFactory();
 } catch (Throwable ex) {
 // Make sure you log the exception, as it might be swallowed
 log.error("Initial SessionFactory creation failed.", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static final ThreadLocal session = new ThreadLocal();

 public static Session currentSession() {
 Session s = (Session) session.get();
 // Open a new Session, if this Thread has none yet
 if (s == null) {
 s = sessionFactory.openSession();
 session.set(s);
 }
 return s;
 }

 public static void closeSession() {
 Session s = (Session) session.get();
 if (s != null)
 s.close();
 session.set(null);
 }
}

This class does not only take care of the SessionFactory with its static initializer, but also has a
ThreadLocal variable which holds the Session for the current thread. Make sure you understand
the Java concept of a thread-local variable before you try to use this helper. A more complex and
powerful HibernateUtil class can be found in CaveatEmptor ,
http://caveatemptor.hibernate.org/

A SessionFactory is threadsafe, many threads can access it concurrently and request Session s.
A Session is a non-threadsafe object that represents a single unit-of-work with the database.
Session s are opened from a SessionFactory and are closed when all work is completed. An
example in your servlet’s process() method might look like this (sans exception handling):

Session session = HibernateUtil.currentSession();
Transaction tx = session.beginTransaction();

Cat princess = new Cat();
princess.setName("Princess");
princess.setSex(’F’);
princess.setWeight(7.4f);

session.save(princess);

tx.commit();
HibernateUtil.closeSession();

In a Session , every database operation occurs inside a transaction that isolates the database
operations (even read-only operations). We use Hibernates Transaction API to abstract from the
underlying transaction strategy (in our case, JDBC transactions). This allows our code to be deployed
with container-managed transactions (using JTA) without any changes.

Note that you may call HibernateUtil.currentSession(); as many times as you like, you
will always get the current Session of this thread. You have to make sure the Session is closed
after your unit-of-work completes, either in your servlet code or in a servlet filter before the HTTP
response is send. The nice side effect of the second option is easy lazy initialization: the Session is
still open when the view is rendered, so Hibernate can load unitialized objects while you navigate the
current object graph.

Hibernate has various methods that can be used to retrieve objects from the database. The most
flexible way is using the Hibernate Query Language (HQL), which is an easy to learn and powerful
object-oriented extension to SQL:

Transaction tx = session.beginTransaction();

Query query = session.createQuery("select c from Cat as c where c.sex = :sex");
query.setCharacter("sex", ’F’);
for (Iterator it = query.iterate(); it.hasNext();) {
 Cat cat = (Cat) it.next();
 out.println("Female Cat: " + cat.getName());
}

tx.commit();

Hibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe
queries. Hibernate of course uses PreparedStatement s and parameter binding for all SQL
communication with the database. You may also use Hibernate’s direct SQL query feature or get a
plain JDBC connection from a Session in rare cases.

1.5. Finally
We only scratched the surface of Hibernate in this small tutorial. Please note that we don’t include any
servlet specific code in our examples. You have to create a servlet yourself and insert the Hibernate
code as you see fit.

Keep in mind that Hibernate, as a data access layer, is tightly integrated into your application. Usually,
all other layers depent on the persistence mechanism. Make sure you understand the implications of
this design.

For a more complex application example, see http://caveatemptor.hibernate.org/ and have a look at
other tutorials linked on http://www.hibernate.org/Documentation

	
	Chapter 1. Quickstart with Tomcat
	1.1. Getting started with Hibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

