EAC Practical 1a (Intro to Simplescalar and Wattch)
Deadline: 4pm 14 October 2010

Worth: 5% of course marks

Introduction

The purpose of this practical is to give you a hands-on introduction to Simplescalar and
Wattch simulator, which will allow you to make a head-start in your course project later on.

Your task is to model a filter cache, by changing the code in the simulator and to evaluate
the performance and power/energy of a processor equipped with a filter cache by simulating
benchmarks and interpreting the results.

The filter cache was described in MICRO’97 (DOI:10.1109/MICRO.1997.645809), by Kin
et al. It is a tiny cache placed ahead of the standard, level 1 D-cache with the intention of
providing a large proportion of memory references with a lower energy cost than the standard
D-cache. It will be covered in more detail later in the course and you shouldn’t need to read
the above paper to do this coursework; basic knowledge of caches from previous courses will
suffice.

The following section provides detailed guidance on what you have to do.

You will need to submit the modified source code files electronically before the deadline.
Do not send any files that you did not edit or any object files. It is best to make an archive
of the files before submitting them. The command you use should look like (use the correct
class, course name for you): submit cs4|msc eac-4|eac-5|eac-4-v la <filel.tar>

The assessment of this practical will be based mainly on the completeness of the model
(both performance and power must be modelled) and how modular your approach is: filter-
cache should be an option and the simulator should work as usual when it is disabled in the
configuration file.

This practical is to be done individually. Please bear in mind the School of Informatics
guidelines on plagiarism.

Details

You will need to make changes to files: sim-outorder.c power.h power.c
For sim-outorder.c you need to do the following:

e Declare variables for the filter cache itself, its configuration options and latency. Use the
existing D-cache as a guide. Search for cache_d11_opt, cache_dl1_lat, cache_dl1.

e Find function sim_reg_options and “register” options and latency for the filter cache.
Again use the code for the D-cache as a guide. Note that the filter cache is small
and highly associative, so use an appropriate default configuration, such as 1 set,
associativity 32 and block size equal to that of the D-cache.

e Find function sim_check_options and create a filter cache using the code for D-cache
as a guide. Consider that filter cache may be disabled in the configuration file and the
processor will still have to work in this case.

e Find function sim_reg_stats and “register” the statistics for the filter cache.

e There are two macros READ_CACHE

, __WRITE_CACHE which access the D-cache in
the fast-forwarding mode of the simulator if ACCESS_CACHE_WHEN_FASTFWD is defined.
If you want to be thorough you can change these, but you do not have to as this option
is not used and changing macros is tricky if you are not familiar with C.

e ['ind function sim_main and clear_cache_stats for filter cache before detailed sim-
ulation starts.

e Find function ruu_commit and look where/how the D-cache is accessed (for stores
only). Change the code so that filter cache is accessed instead, if it is configured. At
this point you need to decide which variable to use for counting filter cache accesses
for Wattch (you can declare it later).

e [ind function ruu_issue and do as above. This is for load accesses.

e Now it is time to consider what happens on filter cache misses. When you “created”
the filter cache, you had to provide an access function (access_fn). This is called on
a miss (details in function cache_access in cache.c) and you have to write it.

Find d11_access_fn and use it to create your filter cache access function. Make sure
you count the number of D-cache accesses for Wattch.

e Finally declare a counter for filter accesses (your new variable mentioned earlier) for
Wattch.

For power.h find the structure that keeps the power of all units and add declarations for
filter cache power and decoder, wordline, etc. Use D-cache (search for dcache) as a guide.

For power.c you need to do the following:

e Declare the filter cache variable defined in sim-outorder.c as extern. Do the same
for the counter of filter accesses. In addition, declare variables for total and max filter
accesses. Also declare variables for filter_power and ccl-3.

e [ind function clear_access_stats and clear the counter for filter accesses.

e Find function update_power_stats and using dcache_access as a guide write code
to calculate filter power and other filter-related statistics. You also need to add filter
power to the various power “totals”. Don’t forget that there are a number of _cc
variables which need to be changed too.

At this point you need to make a decision as to which cache the D-TLB power will
be added to. Note that the D-TLB is accessed for every (data) memory access. Once
you've decided make sure that D-TLB power is not added twice and be consistent by
searching for all other places where it is referenced.

e Find function power_reg_stats and “register” the statistics for filter cache power.
Search for dcache and do what is needed for filter cache. Note that some statistics
need to be defined and others need to be changed to use filter-related statistics. There
is quite a lot of editing to be done here.

e Find function dump_power_stats and using dcache_power as a guide, do what is
needed for filter power.

e Find function calculate_power and modify it to calculate power for the various parts
of filter cache and the total power per access. Use the D-cache as a guide, but beware
that it is not very clear where the code for D-cache starts and ends. Later in the same
function scale your filter power variables to account for short-circuit power as it is done
for the others.

If you code this part similar to the D-cache, you may encounter problems when you
run this part of the code, which calls CACTI. CACTI cannot handle very small caches;
it will give some error messages (look at the output file in detail), but will not exit the
simulator and the power of the unit will not be accurate. I propose to use a CAM-like
structure to model the filter cache, similar to how the D-TLB is modelled. You will
need to change the D-TLB code substantially though to get it right. Also if you use a
CAM for filter cache, the decoder, wordline etc will be undefined and you will need to
remove them from your code.

Evaluation

In order to get more realistic results, you will need to run longer simulations. Skip the first
billion instructions and simulate for 100 million instructions. Each simulation takes around
5 minutes on my DICE machine.

Run three experiments (per benchmark):

e using the original code,
e your modified version with filter cache disabled,
e your modified version with filter cache

There should be minimal differences in the results of the first two. Ideally they should
be identical, but there’s some randomness in simplescalar, so small differences are possible.
Is filter cache saving power? How is the speed affected? Does it save energy?

