
UoE/Informatics Energy-aware computing

Energy-Aware Computing

Lecture 13: Self-timed systems



UoE/Informatics Energy-aware computing

Outline

• Description of self-timed circuit
characteristics

• Potential advantages and problems
• Handshake protocols
• Data representation and Indication
• Pipelines
• Circuit types



UoE/Informatics Energy-aware computing

Self-timed systems

• Self-timed or asynchronous systems
are systems which do not use a global
clock signal to signify when data are
ready

• Local, handshake signals are used
instead
– A request-acknowledge protocol is used



UoE/Informatics Energy-aware computing

Potential advantages
• Low power consumption

– No clock tree to drive
• Up to 40% of total power

– Automatic input guarding
• No new inputs, no transitions

• Speed
– Typical rather than worst case delays

• Modularity
– previously designed units can be put together as

long as they use the same protocol - they don’t
need to work at the same clock rate

• Low electromagnetic interference
– Activity more spread out - not everything happens

at clock edges



UoE/Informatics Energy-aware computing

Problems

• Little support from EDA tools
• Problems with testing
• Speed/power advantages marginal or

proven in niche applications only
• Harder to design

– Glitches, hazards need to be considered



UoE/Informatics Energy-aware computing

Example: pipeline



UoE/Informatics Energy-aware computing

To return to zero or not?

• Handshake protocols can be of two
types:
– 2-phase (or non-return to zero)
– 4-phase (return to zero)



UoE/Informatics Energy-aware computing

When are data ready?

• Match the delay with a tracking circuit
– Implied in previous figures
– Called bundled data
– Very similar to synchronous circuits

• Encode “readiness” in the data using
special codes
– Called delay-insensitive codes

• E.g. dual-rail code: 2 wires per bit At, Af
– 10 = 1, 01 = 0, 00 = not ready (spacer), 11

= illegal/unused



UoE/Informatics Energy-aware computing

Indication

• Asynchronous circuits cannot tolerate hazards
in most cases:
– If a signal changes should the next gate act on it or

not?
• When an OR gate changes from 1 to 0

– We know both inputs are 0
• When is changes from 0 to 1

– We can’t determine the values at both inputs
• OR gates indicates only when both inputs are 0
• AND gates indicate only when both inputs are 1
• XOR gates indicate all single input changes



UoE/Informatics Energy-aware computing

Muller C-element

• In many cases we need to know when both
inputs are 0 and when both are 1

• All handshaking requires cyclic transitions
between 1, 0
– Controllers use C-elements



UoE/Informatics Energy-aware computing

Muller pipeline



UoE/Informatics Energy-aware computing

Delay insensitive pipelines

For multiple inputs,
completion detection is
more complicated:



UoE/Informatics Energy-aware computing

DI logic operations



UoE/Informatics Energy-aware computing

Timing assumptions

• Circuit implementation depends on
timing assumptions

• Delay insensitive circuits
– Positive, bounded but unknown delays in

all gates and wires
– Only inverters and C elements!

• Quasi-DI circuits
– As above, but some wire forks are

isochronic


