Energy-Aware Computing

Lecture 8: Dynamic micro-architecture
level techniques in the processor core

UoE/Informatics Energy-aware computing

Outline

Energy efficiency of OoO processors
Adapting issue queue “depth”
Adapting issue width

Speculation control

Instruction throttling

UoE/Informatics Energy-aware computing

10/15/10

Modern processors

* Modern processors employ a number of

techniques to exploit ILP:

— Multiple functional units

— Out of order execution / dynamic scheduling
— Multiple issue

— Speculation

— Branch prediction

UoE/Informatics Energy-aware computing

How energy-efficient?

Zyuban, Kogge 2000, 2001

Detailed simulation with energy models
Derive energy per instruction as function of
issue width: E; = [WY

EDP = energy/instr * cycles/instr = (energy/
cycle)/IPC?= IPC*E/IPC? = E/IPC = IWY/IPC
Empirically: IPC = [W¢

EDP = [Wvy-a

Energy efficient processor: energy x delay
should not grow with increasing IPC

— why?

UoE/Informatics Energy-aware computing

10/15/10

Energy efficiency

Performance improvement (a) outweighs
the increase in energy (y), with wider IW?

Typically a is much less than 1
Zyuban’s models show y generally > 1

Rename logic y=1.1
Issue window/queue y=1.9
Multi-ported register file y=1.8
Data bypass y=1.6
Functional units y=0.1
UoE/Informatics Energy-aware computing

Adaptive issue queue

Buyuktosunoglu et al 2001

U

CAM/SRAM design

SRAM holds instruction info

CAM search for operand updates

— Wakeup logic

Break structure into chunks using circuits
(transmission gates)

Dynamically change the working size of the
issue queue

Circuit level simulations

oE/Informatics Energy-aware computing

10/15/10

Adaptive 1Q

Wakeup logic Ready ags
Vv Dummy Bitline
N[‘ / = A I /
./ o |
ens CAM| 8 SRAM
=
1ri — en3 tra gal —
N i
—— >
J =l
CAM| —g§H & | SRAM
)
i b_]
transmi — en2 o u gate [
i =}
N 2
1 %‘ 51
ol CAM| =8 =2 | SRAM
n Q
AR
transmi *i‘ u n gal i:xl
])
CAM| &M 1 SRAM
|
Precharge / SenseAmp Precharge / SenseAmp|
Instruction Read
UoE/Informatics Energy-aware computing

When to adapt

» Monitor the activity of entries over a time
window using hardware performance
counters

» Compare with 2 thresholds to make decisions
« Safety mechanism: reverse last decision if
IPC degrades too much

if (IPC < Dfactor * lastIPC) increase size

else if (counter < thresholdl) decrease size

else if (counter < threshold2) retain current size
else increase size

UoE/Informatics Energy-aware computing

10/15/10

Evaluation

Energy 8 entries |16 entries |24 entries
savings

SRAM 45% 25% 10%

CAM 75% 61% 30%

« Most of energy of unit comes from
CAMs continuously searching for their
expected operand

» Total savings for 8 entries ~70%

UoE/Informatics Energy-aware computing

Logical-resizing of 1Q

Folegnani, Gonzalez 2001
« Key observation: no need to attempt to
wake-up empty and ready entries of IQ
* In a 128 entry 1Q, 4-wide issue
— 58 on average are in “full-area”

— 26 of these are empty (already issued)

— Only 74 of 1Q really needs to be searched
for waking-up

UoE/Informatics Energy-aware computing

10/15/10

Wake-up disabling

 Turn off pre-charging of match lines
— when ready bit is on or when empty entry
— relatively easy to implement

« Saves 89% of wake-up energy

UoE/Informatics Energy-aware computing

|Q resizing

* Use disabling mechanism for e\,
resizing:
— force a number of entries to be
empty
— new limit pointer ‘E‘m“/
 Adjust size according to program needs

— Periodically compare contribution to IPC by

“youngest instructions” to empirical
threshold

« Save 91% energy, 1.7% IPC loss

TAIL
POINTER

disabled area

UoE/Informatics Energy-aware computing

10/15/10

Issue queue adaptation

* |Q has worst y factor

« Many other techniques published:

— e.g. different feedback control mechanisms
for increasing / decreasing Q size

* E.g. based on the occupancy rather than on its
‘readyness”

UoE/Informatics Energy-aware computing

Pipeline balancing

Issue IPC
3X

2X

10 20 30 40 50 60 70 80 90 100
Window (per 10,000 cycles)

* The issued instructions per cycle can vary by
as much as 3x

» This can be exploited to save energy
» Bahar, Manne 2001

UoE/Informatics Energy-aware computing

10/15/10

Pipeline balancing

; Right Cluster
:::g::: ﬁ:;:i: (l’ . | Right Functional Units
Branch = Registe
Prediction —&8%‘ | File a lmc_ﬁcx Units
Unit —Rapblaciee d 2 P Units
)) 2 Memory Ports
t Unified
Issue R 1 ' ot
Fetch ll{{l:‘gl.\il(.‘r Queue g‘,-d—a
Unit | = ename) -1 £e Data
g Unit o | =| | = ESE
£ E| BE| E eSS Cache
= 5| §| § 5=
T Z| & & &
¥ o
4
Intruction —ytre—t ol] x t Left Cluster
Cache : Left : Functional Units
Register
T —
2 Memory Ports

» Clustered architecture

* Dynamically change the “width” from 8 issue
to 6 or 4 issue

* Instruction window does not change

UoE/Informatics Energy-aware computing

LI I |

Commit
Unit

When to adapt

« Sampling window measures issue IPC
» Decision affects next sampling window
* Rules:

| Trigger | Threshold Values I

ECysw | (Irpc < 3.0) AND (FPrpc < 1.4)

AND (mode history of 2 Consecutive Windows)
DClyy, (Irpc > 3.2) OR (FPrpc > 1.6)

ECsw | (Ipc < 4.5) AND (FPrpc < 1.4)

DCsw | (Itpc > 5.0) OR (FPrpc > 1.6)

UoE/Informatics Energy-aware computing

10/15/10

Evaluation

* Excellent, detailed evaluation

» Reading highly recommended to guide
how you evaluate your own ideas

* Performance hit on the order of 1-2%

UoE/Informatics

Energy-aware computing

10%

8%

6%

4%

2%
UoE/Informatics

Evaluation: energy

| Configuration | Component | %Savings |
4-wide Execution Unit 20%
Issue Queue 35%
Total Chip 12%
6-wide Execution Units 10%
Issue Queue 17%
Total Chip 6%

Full Chip Power & Energy Savings B Power BEnergy

Energy-aware computing

. : “%%%ﬂm b b

10/15/10

Speculation control

» Multi-issue, out-of-order processors
must speculate over control
dependencies to extract enough ILP

» Speculation could be bad for energy
efficiency:

— Wrong speculation. Useless work
discarded

— Energy expended in each cycle to support
speculation. E.g. info kept to be able to
restore the proc state

UoE/Informatics Energy-aware computing

Pipeline gating

Manne, Klauser, Grunwald, ISCA 98
« Assumes a 4 way issue machine

* Add a confidence estimation
mechanism to branch brediction

* When more than x low confidence
branches in the pipeline,
— Prob. new instructions executed is very low
— Stop fetching l.e. gate the pipeline

UoE/Informatics Energy-aware computing

10/15/10

10

Extra work

OFetch @Decode Olssue OWriteBack

110
100

EW (%)
(4]
o

2 N
A T o

» Extra work (EW) the rate of number of
instructions entering a stage to the number of
committed instructions

UoE/Informatics Energy-aware computing

Pipe-gating: implementation

Current Value of

It Counter (M) ‘ Low Confidence [
‘ Branch Counter
M>N
If Low Conf Branch, If Low Confidence Branch
Gate Fetch Increment Counter Resolved, Decrement Counter
Instructions ! !
Fetch Decpde Issue Writeback| Commit
1 2 3 4 5 [é 7

ICache |~ 2 Cycle Backward Edge Latency for Branch Misprediction
ache

UoE/Informatics Energy-aware computing

10/15/10

11

Pipe-gating: results

Speedup O Not Gated B Gated Speedup ONot Gated B Gated

Decode
Issue
1 mﬂ [tLa
o
1]
z

Perfect confidence Actual results wrt threshold
estimation value

o

compress
gce
ma88ksim
perl
o

=]
(=)

=4

N=2
N

NS:non-speculative processor

UoE/Informatics Energy-aware computing

3 o888

Geo Mean EW (%)

Instruction throttling

* Ideally the throughput of a processor’s front
end (fetch/decode) should match that of the
back end

* If front end is running too much ahead of back
end we can selectively turn off fetch/decode
to save power

 First used in 97 for thermal management of
PowerPC processors

— Halving the fetch rate drops speed by 12% and
temperature by 7C

UoE/Informatics Energy-aware computing

10/15/10

12

Instruction throttling

Baniasadi and Moshovos 2001
* Machine width: 8 instructions

Decode/commit rate (DCR)

— If commit rate too low, lots of unsuccessful
speculation

Dependence based (DEP)
— If more dependencies than x, stop fetching

Adaptive DCR/DEP

— When commit rate is low, use DEP, else use DCR

Slow down 3.6%, instr throughput drop 15%
at fetch, 20% at decode

UoE/Informatics Energy-aware computing

Summary

 Qut-of-order machines inherently
energy-inefficient

* A list of dynamic techniques for
controlling idle capacity & speculation
— Adaptive issue queue
— Issue width adaptation (pipeline balancing)
— Speculation control (pipe gating)
— Instruction throttling

UoE/Informatics Energy-aware computing

10/15/10

13

