Energy-Aware Computing

Lecture 5: Simplescalar/Wattch
howtos

UoE/Informatics Energy-aware computing

Outline

* How to build, configure and run
* Understanding the results

— 1n particular power related
* Simplescalar code navigation

* Wattch code navigation

UoE/Informatics Energy-aware computing

How to build the executable

* Download annotated/refactored (slightly)

version from http://www.inf.ed.ac.uk/teaching/
courses/eac/hl.tar.gz

— de-compress and untar somewhere suitable

* First time only:
—make config-alpha

—make symlinks

» After source code changes:

—make

UoE/Informatics Energy-aware computing

Configure processor

* Create default configuration file conf:
— ./sim-outorder —dumpconfig conf
* Huge number of options

— options after bugcompat are for decay/leakage

— but watch out: your added options may appear
later!

* Most options are self-explanatory and have
a comment line describing available options

— Also explained 1n user guide

UoE/Informatics Energy-aware computing

Run a benchmark

 Download a benchmark from nttp://

www.inf.ed.ac.uk/teaching/courses/eac/traces/

* Open the conf file and change the:
-max:1inst O0to-max:inst 1000000
—-fastfwd Oto-fastfwd 10000000

* The above options are just for testing

— you should think carefully how to configure,
simulate and organize files when experimenting

e ./sim-outorder —config conf <trace> >&
trace.out

UoE/Informatics Energy-aware computing

Reading simulation output

* Simulation outputs a large text file containing:

— Some cacti output, in a weird order
 check for error messages

— Leakage power with detailed breakdown
— Dynamic power per unit, per operation

» strangely starts with some processor parameters
— Simulation configuration options & notes
— Number of fast-forwarding instructions

— Lots of simulation “statistics’/counters:
* uptomem.ptab miss rate

— Dynamic power results
* uptomax cycle power cc3

— Leakage power results

UoE/Informatics Energy-aware computing

Power results

« XYZ power consumption (at the beginning of
%176 output file, from dump power stats())1s in
atts

—crossover scaling accounts for short-circuit
power. Fixed at 20% in Wattch

 (total) XYZ power 1s a measure of energy:

— for each cycle that XYZ 1s used, the power 1s added
up. if you multiply this with the cycle time (variable
Period 1npowerinit.c), you’ll get actual
energy

« avg XYZ poweris XYZ power/sim cycles

— (multiplied with Period) a measure of energy / cycle

—sim cycles — total number of cycles in full
simulation; does not include fast forwarding

UoE/Informatics Energy-aware computing

Power “statistics”

rename power includes RAT, dependency check
logic (DCL), mstruction decode

bpred power includes BTB, RAS, local, global
predictors, chooser

icache power includesI$ and I-TLB

alu power includes integer and FP ALUs.
fetch stage power =icachet+bpred
dispatch stage power =rename power

issue stage power = alutresultbus+dcache
+dcache2+window-+lsq

total power =rename power + fetch stage power
+1ssue stage power + regfile power + clock power

UoE/Informatics Energy-aware computing

Clock gating

* A method for saving power when idle

— More details 1n future lecture

* Wattch has 4 “modes’:
— XYZ — No conditional clocking
— XYZ ccl — Simple conditional clocking
— XYZ cc2 — Aggressive ideal cc
— XYZ cc3 — Aggressive non-ideal cc

UoE/Informatics Energy-aware computing

Simplescalar code navigation

 We’ve seen some data structures last time
 Most of the code 1n sim-outorder.c
— a beast of ~5,500 lines of code
* You will probably need to see cache.c
— just 1,621 lines, most for leakage/decay (TBI)
* You shouldn’t need to touch any other file

— unless you add instructions, or do other major
changes to the processor

UoE/Informatics Energy-aware computing

Understanding simplescalar

 Start with sim main() at end of sim-outorder.c

— Don’t get bogged down to minor details. Grasp
the basics

e Then read the main functions:

— ruu_fetch(), ruu dispatch(), ruu 1ssue(),
Isq refresh(), ruu writeback(), ruu commit()

* Could take a full day’s work, prob. more

— Do this; 1t will save multiple debugging time later

UoE/Informatics Energy-aware computing

sim_main()

perform the fast-forward phase

forever do
ruu_commit ()
ruu_release fu()
ruu_writeback()
Isq refresh()
ruu_issue()
ruu_dispatch()
ruu_fetch()
« Every iteration is a single cycle

« Multiple instructions are handled inside most functions in a
loop

— superscalar machine: many instructions per cycle

UoE/Informatics Energy-aware computing

ruu_fetch()

Fetch and predict a number of instructions

It stalls on I$ misses, branch misprediction

— Using variable ruu_fetch issue delay in
sim main()

Instructions placed in fetch datal[] circular
butter

I$, iTLB accesses for updating their “status™ and
provide latency — determines hit/miss

— Instruction actually fetched from memory

Branch predictor can cheat
— 1nstruction opcode 1s passed to it

UoE/Informatics Energy-aware computing

ruu_dispatch()

Pick from fetchQQ and decode instruction (in order)
— 1n reality it also executes them
— uses a C switch statement and lots of macros

Breaks loads/stores into effective address calculation
(into RUU) and load/store (into LSQ)

Register renaming and dependency checking
Using ruu link idep,ruu install odep
Checks 1f operands ready and places into readyQ

Checks for misprediction, sets spec mode keeps
recovery 1nfo.

UoE/Informatics Energy-aware computing

ruu_issue()

» Get next ready instruction from readyQ
* Stores complete immediately

e Loads check LSQ, access D$, dTLB

* All instructions (exc stores) try to get
appropriate functional unit

fu=res get (fu pool, MD OP class (rs=2op)
* Schedule future event for completion

eventq queue event(rs, sim_cycle + latency)

UoE/Informatics Energy-aware computing

Isq_refresh()

* Scheduling for loads/stores
e Scan LSQ in order

— Store with unknown address, stop scanning

— Store with unknown data, remember address

in std_unknowns
— Ready load matching std unknowns, don’t issue
— Other ready loads move to readyQ

UoE/Informatics Energy-aware computing

ruu_writeback()

» Gets events from eventQ, if time 1s right

 If “recover 1nstruction”, squash pipe, correct
PC, set ruu_fetch i1ssue delay

» Update rename table

* Broadcast result to consuming instructions
— They may become ready; place 1n readyQ

UoE/Informatics Energy-aware computing

ruu_commit()

 Scan RUU in order

— If instruction not complete (writeback), finish

— If store, get mem-port, access D$, dTLB

— Release LSQ entry for loads/stores
— Release RUU entry

UoE/Informatics Energy-aware computing

How wattch works

At 1nitialisation phase (run once)

— Calculate (calculate power) and report power per
unit (dump power stats)

 stored in power C-structure
— Clear cumulative power (energy) global vars

Per stmulation cycle:
—clear access stats() at beginning of cycle

— Calculate “power” at end of cycle in
update access stats()

Most code 1n power.c ~2,600 lines of code
Lots of access counter updates in sim-outorder.c

UoE/Informatics Energy-aware computing

Now it's your turn

* You will add a filter-cache (for data accesses
only) to a processor and evaluate it

 Filter cache 1s a small, highly-associative O-
level cache. Level 1 DS is only accessed when
filter-cache misses

 Details in coursework #1a handout

— worth 5% of total course marks

e [will release model answer after the deadline

UoE/Informatics Energy-aware computing

