
UoE/Informatics Energy-aware computing

Energy-Aware Computing

Lecture 5: Simplescalar/Wattch
howtos

UoE/Informatics Energy-aware computing

Outline

•  How to build, configure and run
•  Understanding the results

–  in particular power related

•  Simplescalar code navigation
•  Wattch code navigation

UoE/Informatics Energy-aware computing

How to build the executable
•  Download annotated/refactored (slightly)

version from http://www.inf.ed.ac.uk/teaching/
courses/eac/hl.tar.gz!

–  de-compress and untar somewhere suitable
•  First time only:

– make config-alpha!
– make symlinks!

•  After source code changes:
– make!

UoE/Informatics Energy-aware computing

Configure processor

•  Create default configuration file conf:
– ./sim-outorder –dumpconfig conf!

•  Huge number of options
–  options after bugcompat are for decay/leakage
–  but watch out: your added options may appear

later!
•  Most options are self-explanatory and have

a comment line describing available options
– Also explained in user guide

UoE/Informatics Energy-aware computing

Run a benchmark
•  Download a benchmark from http://

www.inf.ed.ac.uk/teaching/courses/eac/traces/!

•  Open the conf file and change the:
-max:inst 0 to -max:inst 1000000!
-fastfwd 0 to -fastfwd 10000000!

•  The above options are just for testing
–  you should think carefully how to configure,

simulate and organize files when experimenting
•  ./sim-outorder –config conf <trace> >&
trace.out!

UoE/Informatics Energy-aware computing

Reading simulation output
•  Simulation outputs a large text file containing:

–  Some cacti output, in a weird order
•  check for error messages

–  Leakage power with detailed breakdown
–  Dynamic power per unit, per operation

•  strangely starts with some processor parameters
–  Simulation configuration options & notes
–  Number of fast-forwarding instructions
–  Lots of simulation “statistics”/counters:

•  up to mem.ptab_miss_rate
–  Dynamic power results

•  up to max_cycle_power_cc3!
–  Leakage power results

UoE/Informatics Energy-aware computing

Power results
•  XYZ power consumption (at the beginning of

the output file, from dump_power_stats()) is in
Watts
– crossover_scaling accounts for short-circuit

power. Fixed at 20% in Wattch
•  (total) XYZ_power is a measure of energy:

–  for each cycle that XYZ is used, the power is added
up. if you multiply this with the cycle time (variable
Period in powerinit.c), you’ll get actual
energy

•  avg_XYZ_power is XYZ_power/sim_cycles!
–  (multiplied with Period) a measure of energy / cycle
– sim_cycles – total number of cycles in full

simulation; does not include fast forwarding

UoE/Informatics Energy-aware computing

Power “statistics”
•  rename_power includes RAT, dependency check

logic (DCL), instruction decode
•  bpred_power includes BTB, RAS, local, global

predictors, chooser
•  icache_power includes I$ and I-TLB
•  alu_power includes integer and FP ALUs.
•  fetch_stage_power = icache+bpred
•  dispatch_stage_power = rename_power
•  issue_stage_power = alu+resultbus+dcache

+dcache2+window+lsq
•  total_power = rename_power + fetch_stage_power

+ issue_stage_power + regfile_power + clock_power

Clock gating

•  A method for saving power when idle
– More details in future lecture

•  Wattch has 4 “modes”:
– XYZ – No conditional clocking
– XYZ_cc1 – Simple conditional clocking
– XYZ_cc2 – Aggressive ideal cc
– XYZ_cc3 – Aggressive non-ideal cc

UoE/Informatics Energy-aware computing

Simplescalar code navigation

•  We’ve seen some data structures last time
•  Most of the code in sim-outorder.c!

–  a beast of ~5,500 lines of code

•  You will probably need to see cache.c
–  just 1,621 lines, most for leakage/decay (TBI)

•  You shouldn’t need to touch any other file
–  unless you add instructions, or do other major

changes to the processor

UoE/Informatics Energy-aware computing

Understanding simplescalar

•  Start with sim_main() at end of sim-outorder.c
– Don’t get bogged down to minor details. Grasp

the basics
•  Then read the main functions:

–  ruu_fetch(), ruu_dispatch(), ruu_issue(),
lsq_refresh(), ruu_writeback(), ruu_commit()

•  Could take a full day’s work, prob. more
– Do this; it will save multiple debugging time later

UoE/Informatics Energy-aware computing

sim_main()
perform the fast-forward phase
forever do

ruu_commit ()
ruu_release_fu()
ruu_writeback()
lsq_refresh()
ruu_issue()
ruu_dispatch()
ruu_fetch()

•  Every iteration is a single cycle
•  Multiple instructions are handled inside most functions in a

loop
–  superscalar machine: many instructions per cycle

UoE/Informatics Energy-aware computing

ruu_fetch()
•  Fetch and predict a number of instructions
•  It stalls on I$ misses, branch misprediction

–  Using variable ruu_fetch_issue_delay in
sim_main()!

•  Instructions placed in fetch_data[] circular
buffer

•  I$, iTLB accesses for updating their “status” and
provide latency – determines hit/miss
–  Instruction actually fetched from memory

•  Branch predictor can cheat
–  instruction opcode is passed to it

UoE/Informatics Energy-aware computing

ruu_dispatch()
•  Pick from fetchQ and decode instruction (in order)

–  in reality it also executes them
–  uses a C switch statement and lots of macros

•  Breaks loads/stores into effective address calculation
(into RUU) and load/store (into LSQ)

•  Register renaming and dependency checking
Using ruu_link_idep, ruu_install_odep!

•  Checks if operands ready and places into readyQ
•  Checks for misprediction, sets spec_mode keeps

recovery info.

UoE/Informatics Energy-aware computing

ruu_issue()
•  Get next ready instruction from readyQ
•  Stores complete immediately
•  Loads check LSQ, access D$, dTLB
•  All instructions (exc stores) try to get

appropriate functional unit
fu = res_get (fu_pool, MD_OP_class (rsop)

•  Schedule future event for completion
eventq_queue_event(rs, sim_cycle + latency)

UoE/Informatics Energy-aware computing

lsq_refresh()

•  Scheduling for loads/stores
•  Scan LSQ in order

– Store with unknown address, stop scanning
– Store with unknown data, remember address

in std_unknowns!

– Ready load matching std_unknowns, don’t issue
– Other ready loads move to readyQ

UoE/Informatics Energy-aware computing

ruu_writeback()

•  Gets events from eventQ, if time is right
•  If “recover instruction”, squash pipe, correct

PC, set ruu_fetch_issue_delay
•  Update rename table
•  Broadcast result to consuming instructions

– They may become ready; place in readyQ

UoE/Informatics Energy-aware computing

ruu_commit()

•  Scan RUU in order
–  If instruction not complete (writeback), finish
–  If store, get mem-port, access D$, dTLB
– Release LSQ entry for loads/stores
– Release RUU entry

UoE/Informatics Energy-aware computing

How wattch works
•  At initialisation phase (run once)

–  Calculate (calculate_power) and report power per
unit (dump_power_stats)

•  stored in power C-structure
–  Clear cumulative power (energy) global vars

•  Per simulation cycle:
– clear_access_stats() at beginning of cycle
–  Calculate “power” at end of cycle in
update_access_stats()!

•  Most code in power.c ~2,600 lines of code
•  Lots of access counter updates in sim-outorder.c!

UoE/Informatics Energy-aware computing

Now it’s your turn

•  You will add a filter-cache (for data accesses
only) to a processor and evaluate it

•  Filter cache is a small, highly-associative 0-
level cache. Level 1 D$ is only accessed when
filter-cache misses

•  Details in coursework #1a handout
–  worth 5% of total course marks

•  I will release model answer after the deadline

UoE/Informatics Energy-aware computing

