
9/23/10

1

UoE/Informatics Energy-aware computing

Energy-Aware Computing

Lecture 4: OoO Processors
review

UoE/Informatics Energy-aware computing

Outline

•  OoO processor basics
•  Hardware structures and principles
•  Simplescalar modeling of OoO processors

Note: presentation tuned for simple-scalar
other solutions are possible

9/23/10

2

UoE/Informatics Energy-aware computing

OoO overview
•  What: execute many instructions

simultaneously
– More than overlapped execution (pipelining)

•  How: multiple functional units (ALUs int, fp,
memory ports, reg-file ports, wide fetch

•  Problems: different execution latencies,
instruction dependencies, precise exceptions,
…

UoE/Informatics Energy-aware computing

Different execution latencies

Instruction completion/result write-back
 out-of-order

commit: in order

9/23/10

3

UoE/Informatics Energy-aware computing

Re-order buffer (ROB)

decode
dispatch

commit

•  FIFO to track instructions in program order
– Allocate entries at dispatch stage
– De-allocate at commit

•  Used for other purposes:
– Hold results before instruction commits

UoE/Informatics Energy-aware computing

Data dependencies

•  True dependencies (RAW)
– Must be preserved or program breaks

•  Other dependencies (WAR, WAW)
– Remove using register renaming

•  Physical registers vs architectural registers
– New physical register per instruction, in ROB
– Rename hardware (RAT) maintains mapping

9/23/10

4

Register renaming

•  At dispatch use RAT to:
–  look-up for current source operands mapping
– write new mapping for destination register

•  At commit
–  “remove” RAT entry

•  Pipe squash (e.g. branch misprediction)
–  restore RAT to state before misprediction

UoE/Informatics Energy-aware computing

UoE/Informatics Energy-aware computing

Instruction dispatch stage

•  Equivalent to decode stage
–  Instruction decoding
– ROB allocation
– Register renaming
– Source operand reading (if available)
– Dispatch to reservation station – essentially a

queue of instructions waiting for operands and
available FUs for execution

9/23/10

5

UoE/Informatics Energy-aware computing

Instruction wake-up & selection

•  Results from FUs get stored in ROB
•  Dependent instructions monitor result

busses and wake-up
–  become ready for execution

•  Scheduler selects ready instructions and
issues to functional units
–  issue width – max number of instr issued
–  instruction window – number of instr in the

queue between dispatch and issue

UoE/Informatics Energy-aware computing

Loads & stores

•  Stores must change memory at commit
– Why not earlier?
– But too frequent to stall at each store

•  Special Load/Store Queue
–  issue to LSQ and continue execution
– when store @ commit, actually perform store

•  Load/store dependencies
–  put loads in LSQ in program order
–  loads may forward store values
–  in multi-proc, mem-op ordering is crucial

9/23/10

6

UoE/Informatics Energy-aware computing

Branches and speculation

•  Branch prediction, speculative execution to
keep machine working at high speed

•  Fetch asks bpred hardware for next PC
•  When branch executes, checks the prediction

–  if wrong, give IFU correct PC, squash pipe
•  bpred hardware needs updating

– Three main options: @dec, @writeback,
@commit

Branch prediction hardware

•  RAS – return address stack
–  simple stack for providing return addresses

•  BTB – branch target buffer
–  a cache proving target PC for known branches

•  Branch direction prediction
–  lots of options. Simplescalar has built-in

support for a number of them.

UoE/Informatics Energy-aware computing

9/23/10

7

Simplescalar architecture

UoE/Informatics Energy-aware computing

Simplescalar is a simulator
•  Don’t forget: Simplescalar does not model

hardware directly
–  it takes shortcuts to speed up simulation

•  Instructions are actually “executed” early
–  in-order during dispatch (decode) stage

•  Misspeculated instructions are updating a
“fake” reg file and memory

•  Caches only keep tags and status information
– Actual data is kept in memory

UoE/Informatics Energy-aware computing

9/23/10

8

Mapping into Simplescalar

•  Reorder buffer (incl. physical registers),
reservation stations are combined into a
Register Update Unit (RUU)

•  Loads/stores create 2 micro-ops
–  effective address calculation (could be reg+reg)

in RUU
–  actual load/store in LSQ

UoE/Informatics Energy-aware computing

RUU
•  Circular buffer, each entry contains

–  The instruction opcode, PC
–  Ready bits for source registers
–  A linked list of consumers per destination register
–  Info for recovering from branch misprediction
–  Status flags, e.g., what state is this in, is it an

address op
•  An instruction can execute when all source

registers are available: readyq in ruu_issue()
•  On write-back:

–  walk target list, set ready bits of consumers

UoE/Informatics Energy-aware computing

9/23/10

9

Renaming mechanism

•  Register renaming combined with
dependency lists

•  CREATE_VECTOR(reg_name) returns
current RUU entry which (will) produce the
result
– Note: it does not create an entry!

UoE/Informatics Energy-aware computing

